

Guest Speaker:

Kevin O'Neill, P.E. Project Engineer, Sieffert Associates

Host:

Mike Parnell President / CEO, ITI ASME B30 Vice Chair (Cranes & Rigging)

ASME P30 Chair (Lift Planning)

The views expressed in this presentation are that of ITI and are not necessarily the views of the ASME or any of its committees

We Rig it Right! iti.com

TRAINING

FIELD SERVICES

CERTIFICATION

BOOKSTORE

E-LEARNING

WHO WE ARE

A world leader in crane and rigging training and consulting.

We Rig It Right!

TRAINING • FIELD SERVICES • CERTIFICATION • BOOKSTORE • E-LEARNING

WHO WE ARE

Serves a Variety of Industries

- Aerospace
- Chemicals
- Construction
- DOD
- DOE
- Electric Utility
- Hydro
- Manufacturing

- Maritime
- Mining
- Nuclear
- Oil & Gas
- Pulp & Paper
- Railroad
- Shipbuilding
- Wind Energy

OUR CUSTOMERS

The World's Greatest Organizations Trust ITI's Expertise with their Crane & Rigging Operations

ITI SHOWCASE WEBINAR SERIES

Past Presentations:

Cranes, Rigging & Your Organization Effective Crane & Rigging Training Methods for Your Employees 10 Audit Points for Your Crane & Rigging Operations: An HSE Perspective Tackling the Challenges of Training Site Supervisors, Lift Directors, and other Leaders How Studies of Crane Accidents and Trends Lead to a Safer Work Environment

Today's Presentation:

Mobile Crane Lift Planning in Construction Environments

Upcoming Presentations:

4 Major Lifting Considerations in Power Gen Environments

'RAINING • FIELD SERVICES • CERTIFICATION • BOOKSTORE • E-LEARNING

MIKE PARNELL – ABOUT YOUR HOST

Mr. Parnell has a wealth of knowledge regarding cranes, rigging, and lifting activities throughout a variety of industries.

- 30+ years learning about wire rope, rigging, load handling, and lifting activities.
- Vice Chair of the ASME B30 Main Committee which sets the standards in the US for cranes and rigging
- Chair of the ASME P30 Main Committee which sets the standards for lift planning.

ASME standards are also adopted by many countries around the world.

The views expressed in this presentation are that of ITI and are not necessarily the views of the ASME or any of its committees.

TRAINING • FIELD SERVICES • CERTIFICATION • BOOKSTORE • E-LEARNING

ABOUT THE SPEAKER

Kevin O' Neill, P.E., Project Engineer, Siefert Associates

Mr. O'Neill is a member of the ASME P30 Main Committee (Planning for the Use of Cranes, Derricks, Hoists, Cableways, Aerial Devices and Lifting Accessories) and currently serves as a Project Engineer for Siefert Associates, Naugatuck, Connecticut.

Current responsibilities as a Project Engineer include directing and managing multiple concurrent engineering projects while ensuring their success in meeting their respective objectives.

Mr. O'Neill provides Construction Engineering Services for contractors including erection and demolition plans, crane and rigging layouts/design and equipment foundation analysis.

TRAINING • FIELD SERVICES • CERTIFICATION • BOOKSTORE • E-LEARNING

Kevin O'Neill, P.E. Siefert Associates, LLC

SIEFERT ASSOCIATES, LLC 180 CHURCH STREET NAUGATUCK, CT 06770 PHONE 203-723-1477

www.siefertassociates.com

The Premier Construction Engineering Firm in the NYC Metro Area

Professional, Capable, and Dedicated.

<u>Structural and Geotechnical Engineering</u>: Working Drawings and Calculations prepared by Professional Engineers Licensed in CT, NY, NJ, PA, DC, RI, VT, MA, WA & IN tailored to the preferred means and methods of the Client.

Siefert Associates, LLC

Construction Engineers

- Demolition and Erection Plans for Bridges and Buildings
- Crane Layout and Rigging Design
- Temporary Bridges and Structures
- Heavy Hauling and Alternative Lifting Schemes
- Structural Rehabilitation and Retrofit Operations
- Access Platforms and Debris Shields
- Bridge Jacking and Bearing Replacement
- Concrete Forming and Shoring
- Temporary Earth Support Sheet Piling etc.
- Temporary Cofferdams
- Detailed Work Plans
- Analysis of Construction Loads on Structures
- Detailed Work Plans

Permanent Design Drawings and Calculations for:

- Foundations and Retaining Walls
- Bridges and Buildings

Siefert Associates, LLC

Construction Engineers

New Definitions ASME P-30

- Lift Director Responsible for verifying the category of the load handling activity, reviewing and implementing the lift plan.
- Lift Planner Responsible for developing the lift plan.
- Load Handling Equipment (LHE)
 Load Handling Activity (LHA)

Assessing Loads to Be Handled

- New Construction
 - Known weights of loads, pick point locations & center of gravity
 - Drawings/data available
- Demolition
 - Unknown weights of loads and center of gravity
 - Elaborate calculations/very conservative guesswork
 - Cutting free while hoisting

Assessing Loads to Be Handled Cont.

- Equipment Loads
 - Hook block(s) rigging falls jib
- Chart Reduction
 - 125% -150% picking capacity (i.e. RR)
 - 85% capacity of rated chart rule of thumb

LHE Position

Cost Considerations

MARINO

- Relative efficiency of operation from one location
 over another
- Radius increase leads to crane increase

LHE Selection

•

- Crane Basics
 - Capacity
 - Reeving
 - Reach
 - Clearance
 - Constructability
 - Availability

LHE Selection Continued

- Telescopic/Hydraulic
 - Short term operation
 - Quick setup/small crew
 - May have limited onsite mobility (larger cranes)
 - Higher rental rate

LHE Selection Continued

- Lattice Boom Truck/Crawler
 - Long term operation
 - Onsite mobility
 - Added labor for assembly/disassembly
 - High transportation cost
 - Low rental rate

Lift/Swing Clearances

- Lift Clearances
 - Tip height
 - Range diagram
 - Rigging drift
 - Two blocking

Swing Clearances

- Spreadsheet calculations
- Drafting
- Lift planning programs

LHE Loads on Surface

- Spreadsheet Calculations
 - Component weights and centers of gravity
- Manufacturer's Programs or Charts
- Hydraulic/Truck Cranes
 - Point loads
- Crawler Cranes
 - Pressure diagrams (uniform, trapezoidal & triangular)

LHE Loads on Structures

- Foundation walls
- Tunnels or subways
- Bridge decks
- Piers
- Slabs
- Utility banks

878186STU_SH_0.TXT Programm S T U M A X Version 8.8 vom 23.07.1999 24-OCT-00 14:00:13 EINGABEDATEI: istu.878186

MANNESMANN-DEMATIC OUTRIGGER LOADING	75.00 %	R
0-360Degr. OUTRIGGER LOADING IN LB*1000	PSI= 1.00	
CRANE : CC 2800 SH	Ot ZB	
GO, GU, EO, EU, ASB, 40.13 92.00 1.43 -0.10 8.4 GGW = 160.00 EGG = 6.18	, ASW, AFD, 40 8.40 -2.00	EASH, BR 4.20 1.50

MAIN BOOM

LENGTH OF MAIN BOOM 78.7 FEET AS= 14.83 T AF= 9.40 T

							(0565					
RADIUS	CAPACITY				BOOM	ANGLE	(DEGR	(EES)				
FI	LB-1000	1 (0)		2	(45)			2	(00)		
		= }	180)		4	(125)			2	(90)		
		AD.	(00)	٨	4	(133)	D	٨	D	C	D	
10 7	041 4	624	105	712	411	108	107	624	100	622	105	
19.7	941.4	109	193	/ 12	100	710	107	024	190	022	192	
22 0	90F 1	190	145	411	200	207	400	GE 1	147	640	145	
25.0	095.1	147	640	200	12	752	207	051	14/	049	143	
26.2	955 4	679	049	917	260	266	397	679	101	675	00	
20.2	033.4	101	675	271	203	012	260	0/0	101	0/3	99	
20 5	726 2	627	0/5	797	225	222	209	627	82	624	80	
29.5	130.5	037	624	207	323	702	225	037	02	034	80	
22 0	604 1	571	004	602	205	202	525	E 71	00	EGO	80	
52.0	004.1	2/1	569	208	303	680	205	5/1	02	200	80	
20 4	440.0	100	300	508	201	270	505	190	00	497	80	
35.4	440.9	409	497	294	201	572	201	409	02	407	00	
45 0	242 0	441	40/	515	262	250	201	111	80	429	80	
43.3	545.5	82	138	262	202	512	250	441	02	430	80	
52 5	280 0	100	80	176	246	243	13	409	83	406	80	
32.3	200.0	93	406	246	15	474	243	409	05	400	00	
50 1	235 0	388	70	451	235	232	16	388	82	385	70	
39.1	233.3	200	295	225	10	110	222	100	02	202	19	
65 6	202 8	372	78	433	226	224	18	372	81	370	78	
05.0	202.0	81	370	226	220	130	224	572	01	570	10	
72 2	176 4	250	79	116	220	217	21	250	91	256	79	
12.2	170.4	81	356	220	220	111	217	339	01	330	10	
		01	220	220	25	414	21/					
MAY OI		EPON		PTCCEP CD	78	26.2	ET *	855 4 10	*100	00 - 8	13	
MAX OI	ITP LOAD	DEAD		PIGGER AR	78	26.2	FT *	855 4 14	2*100	0 - 8	17	
	OTR: LOAD	KLAK	001	KIGGER AD	10	20.2		033.4 LL	, 100	/0 = 0	· T /	
MAX. GI	ROUND PRE	SSURE	BY	736.3 LB*	1000	AT	29.5	FEET =	21	9.35	PSI	
RADIUS	CAP	FPMAX		1	2		3	4	5			
FT I	LB*1000	PSI		1993 			PSI					
19.7	941.4	117.34	4	117.34	109	.16	64.16	108.08	3 1	15.91		
23.0	895.1	149.19	9	149.19	128	.03	66.94	126.64	1 1	46.75		
26.2	855.4	208.22	2	208.22	153	.29	69.64	151.29) 2	203.26		
29.5	736.3	219.3	5	219.35	150	.88	65.48	148.65	5 2	12.92		
32.8	604.1	180.99	9	180.99	130	.85	58.71	128.80) 1	75.68		
					1	Page 1						

2.4 Major component weights and center of gravity

	weight (kg)	distance from center of slewing (m) (forward :+)
Boom portion	5774	
Slewing portion	6883	-1.508 m
Carrier portion	14462	-0.364 m

- 2 5 Amount of counterweight (Drg. No. 342-812-30000) mass : 1800 kg mounting bolt : JIS BLOSI M24×140, class 10.9, number:2 JIS BLOSI M24×60, class 10.9, number:4
- 2 6 Drawings of jlb sections : Drg. No. 342-207-32000 and Drg. No. 342-207-33000
- 2 8 Details of jib mounting on boom :Drg. No. 342-208-41000 and 342-207-02200
- 2.9 Details of jib top sheave mounting :Drg. No. 342-208-41000

2.0 Boom section weight and center of gravity

	weight(kg)	distance from boom pivot pla(m)			
Base boom	1476	4. 270			
2nd boom	1026	4. 348			
3rd boom	908	4. 375			
Top boom	850	6.652			

2 1 Weight of boom extension cylinder

D1:distance to boltom of a boom part D2:length of a boom part (if D2=0, it means concentration load.) D3:distance from boltom of the boom part to center of gravity W1:melght of a boom part W2:weight increase due to unit extension of the telescoping cylinder

	1			-		
		W1 (kg)	D1 (e)	D2 (m)	D3 (m)	W2 (kg)
No.1 cylinder	rod	215	0.21	6. 877	0.0	1
	cylinder	229	-0.03	7.057	0.0	0.0107
No.2 cylinder	rod	213	0. 55	6. 877	0.0	-
	cylinder	229	0.31	7. 0575	0.0	0. 0107

Job No.: XXXX Sheet No____Of ____ Made By ____Date ____ Ckd By ____ Date____

Siefert Associates, LLC 180 Church Street Naugatuck, CT 06770	Subject: Maximum Outrigger L Tadano TR450-XL4	oad Shee Mad Cko	Job No.: XXXX et NoOf e ByDate d By Date	S 1 N	Siefert Associates, LLC 80 Church Street laugatuck, CT 06770	Subject: Maxir Tadano	num Outrigger L o TR450-XL4	oad
Shadow Length Boom Angle	$\gamma \coloneqq \operatorname{acos}\left(\frac{R-t}{d}\right)$	$\gamma = 47.704 \deg$			This document creates the maximum Reference: Shapiro, Cranes and Derri	outrigger load for a cks Third Edition	Tadano TR-450XL-4	Hydraulic Crane
Boom Angle	$\theta := \beta + \gamma$	$\theta = 48 \deg$			Crane Data			
Tip Height:				3	Outrigger Spread (Front to Rear)		d ₁ := 22.974ft	
	$I = \frac{1}{2} $				Outrigger Spread (Side to Side)		$d_t := 22.97 ft$	
	$H_{tip} := h + \sqrt{d} - (R - t)$	$H_{tip} = 64.5 \text{ ft}$			Distance from CL to Outrigger Centroi	d (+ Rear of CL)	$x_{0} := .485 ft$	
om Moment:					Boom Pin Distance (+ Front of CL)		t := 7.22ft	
$M_{\mathbf{b}} := \left[W_{\mathbf{b}} \cdot \left(\mathbf{t} + \mathbf{d}_{\mathbf{b}} \cdot \cos(\theta) \right) \right] + \left[W_{\mathbf{j}} \cdot \right]$	$\left(t + L_{b} \cdot \cos(\theta) + d_{i} \cdot \cos(\theta - \mu)\right)$	$M_{\rm h} = 433.7 \rm kip \cdot ft$			Boom Pin Height		h := 12ft	
					Length of Boom		L _b := 71ft	
uperstructure Moment:					Length of Jib		$L_i := Oft$	
Μ	$\mathbf{M}_{\mathbf{h}} := \mathbf{M}_{\mathbf{h}} + \mathbf{W} \cdot \mathbf{R} - \mathbf{W}_{\mathbf{u}} \cdot \mathbf{d}_{\mathbf{u}} - \mathbf{W}_{\mathbf{ctw}} \cdot \mathbf{d}_{\mathbf{ctw}}$	$M_{11} = 577.3 \text{kip} \cdot \text{ft}$		2	Jib Offset		$\mu := 0 \cdot \text{deg}$	
		u ,		3	Operating Radius		R := 55ft	
uperstructure Vertical Load:					Slew Range (deg)		$\alpha := 0, 5180$	
	$V_{ii} := W_{b} + W_{i} + W_{ii} + W_{ctw} + W$	$V_{11} = 33.3 \text{kip}$		3	Weights			
	a oʻj a olin				Weight of Carrier		W - 27 Phio	
otal Vertical Load:					Weight of Superstructure		$W_c := 37.8 \text{kip}$	
	$V := V_{\mu} + W_{c}$	V = 71.1 kip		3	Weight of Counterweight		$W_{\rm U} := 14.2 {\rm Kip}$	
ortion of Moment:	u c				Weight of Boom		$W_{ctw} := 0 Kip$ $W_{ctw} := 15 1 kip$	
er Rear	$M_{nr} := (M_u \cdot \cos(\alpha \cdot deg) - W_c \cdot d_c - V)$	wxo)			Weight of Jib		$W_{\rm b} = 0$ kip	
	m_{α} (u = 0.0	u oy			Weight of Hook Load (Block Rigging	lifted Load Falls)	$W_j = 0 kip$ W = 4 kip	
er Side	$M_{ns} := (M_u \cdot sin(\alpha \cdot deg))$					inted Loud, Failey	и .= чкір	
rigger Reactions:	α							
	$V = 1 \begin{pmatrix} M_{ns} & M_{nr_{\alpha}} \end{pmatrix}$				Carrier CG		$d_c := 1$ ft	
ont Outrigger Boom Side	$P_{fb_{\alpha}} \coloneqq \frac{1}{4} + \frac{1}{2} \left[\frac{1}{d_t} - \frac{1}{d_1} \right]$				Superstructure CG		d _u := 5.38ft	
							d _{ctw} := 0ft	1
ont Outrigger Counterweight Side	$P_{c} := \frac{V}{V} - \frac{1}{1} \left(\frac{M_{ns}}{m_{\alpha}} + \frac{M_{nr}}{m_{\alpha}} \right)$			1	lib CG		$a_b := L_b \cdot .45$	$d_b = 32 \text{ ft}$
	$\frac{1}{1} \operatorname{c}_{\alpha} 4 2 \left(\operatorname{d}_{t} \operatorname{d}_{l} \right)$				310 CG		$d_j \coloneqq L_j \cdot 45$	$d_j = 0$
	(M_{ns}, M_{nr})				Calculations			
ear Outrigger Boom Side	$P_{rb_{\alpha}} := \frac{V}{4} + \frac{1}{2} \left[\frac{m_{\alpha}}{d} + \frac{m_{\alpha}}{d} \right]$				Boom Angle:	a t t sister		
					X-Y Components of Jib	$x_j := L_j \cdot \sin(\mu)$		$x_j = 0$
ar Outrigger Counterweight Side	$P_{ro} := \frac{V}{V} - \frac{1}{2} \left(\frac{i v n_s}{m_{\alpha}} - \frac{i v n_{r_{\alpha}}}{m_{\alpha}} \right)$					$y_j = L_j \cos(\mu)$		$y_j = 0$
	$\alpha 4 2 (d_t d_l)$				Enclosed Angle	$\beta := \operatorname{atan}\left(\frac{x_j}{1-x_j}\right)$	_)	$\beta = 0 \text{ deg}$
tal Outrigger Loads	$P_{crane} := P_{fb} + P_{fc} + P_{rb} + P_{rc}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	y _j	p = 0 dog
	α α α α α α				Shadow Length of Combined Boom	$d := \sqrt{x_1^2 + (L_1)^2}$	$(+ v_{i})^{2}$	d = 71 ft
						1.1 (np	J/	and hadrons

Siefert Associates, LLC S 180 Church Street Naugatuck, CT 06770	ubject: Maximu Tadano T	m Outrigger Load R450-XL4	Shee Made Ckd	Job No.: XXXX et NoOf ByDate ByDate
Summary				
$\textbf{Counterweight} \qquad W_{ctw} = 0 kip$	Operating Radi	us $R = 55 ft$	Tip Height	$H_{tip} = 64.5 ft$
Length of Boom $L_b = 71 \text{ ft}$	Boom Angle	$\theta = 47.7 \text{ deg}$	Max Pick	W = 4 kip
Length of Jib $L_j = 0$	Jib Offset	$\mu = 0$		
$\begin{array}{c c} & M_{nr_{\alpha}} & M_{ns_{\alpha}} \\ \hline \alpha = & \hline ft \cdot kip &$	$\frac{P_{fb_{0c}}}{kip} = \frac{6.4}{8.8}$ 10.1 11.4 12.9 14.4 15.9 17.4 19 20.5 22 23.5 25 26.5 27.8 29.1 30.4 31.5 32.6 33.5 34.3 35.1 35.6 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36	$\begin{array}{ccc} & & P_{fb_{\alpha}} \\ \hline & & kip \\ \hline & kip \\ \hline & & & kip \\ \hline & & & & kip \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	$\frac{P_{rc_{0}}}{kip} = \frac{29.2}{28}$ 26.8 25.5 24.1 22.7 21.2 19.7 18.1 16.6 15.1 13.5 12 10.5 9.1 1.5 1.2 10.5 9.1 1.1 -0.6 -0.9 -1.1 -1.2 -1.1 -0.9 -0.6 -0.1 0.5 1.2 2 3 4 4	$\frac{P_{crane_{\alpha}}}{kip} = \frac{1}{2}$
		Max Ou	trigger Load	MaxP = 36.7 kin

Siefert Associates LLC

Naugatuck, CT 06770 203.723.1477

180 Church Street

	CALCULATE MAX OUTRIGGER LOADS USING REACTION TABLES
	Calculate outrigger reactions for KMK5175
	72ft boom - 99.2k ctwt Load wt = 73.3k Radius = 40ft
KMK-5160 Outrigger Loads (in 1000 lbs.) Base-Nr. 2.295.640 10.06-1992 MAIN BOOM: Tel.1=1.0 72.17 feet Tel.1=1.0 Tel.2=0.0 Tel.4=0.0 COUNTERWEIGHT: Outrigger ange: 99210 Ibs 36.90 x (17.22+10.91) Tel.3=0.0	72ft boom - 99.2k ctwt Load wt = 73.3k Radius = 40ft Left Rear Outrigger Pn1 := 189.6·k Outrigger loading at position IV 45 deg over Rear outrigger(HR) for 96.0k and 40ft Pn0 := 46k Outrigger loading at position IV (HR) for 0k and 40ft WL := 73.3·k Load to be lifted WT := 96k Load according to Lifting capacity table PIVLR := (Pn1 - Pn0). $\frac{W_L}{W_T}$ + Pn0 PIVLR = 155.6·k Right Rear Outrigger Po := 74.5k Outrigger loading at position IV 45 deg over Rear outrigger(HL) for 96.0k and 40ft
	· n2 · · · · · · · · · · · · · · · · · ·
et (**) VL VR HL HR	P _{nO2} := 62.3·k Outrigger loading at position IV (HL) 0k and 40ft
10 194.0 101.8 101.8 108.8 108.8 108.8 22.2 104.9 101.9 122.1 81.5 99.6 105.6 134.3 76.3 89.0 117.8 138.0 79.4 79.4 131.1 131.1 131.1 15 10.0 195.1 195.6 195.6 195.6 11.5 195.6 195.6 11.5 195.6 111.	$P_{IVRR} := \left(P_{n2} - P_{n02}\right) \cdot \frac{W_{L}}{W_{T}} + P_{n02} \qquad \qquad P_{IVRR} = 71.6 \cdot k$
20 164.0 124.5 124.5 124.6 71.0 76.1 90.4 135.7 45.7 118.3 52.5 137.8 53.9 164.7 32.8 72.2 103.2 174.8 45.0 45.0 150.5 150.5	Right Front Outrigger
20 0.0 34.4 34.4 74.2 74.1 54.4 24.2 94.3 54.3 36.8 76.7 55.6 64.1 30.7 71.5 71.5 42.0 42.0 25 141.0 126.7 126.8 57.2 57.4 86.8 132.5 42.6 118.0 44.3 163.3 20.8 73.8 94.9 178.6 33.8 150.2 150.2	P _{n3} := 0k Outrigger loading at position IV 45 deg over Rear outrigger(VL) for 96.0k and 40ft
25 0.0 36.8 36.8 76.7 50.7 32.2 86.6 57.5 86.1 39.9 81.3 39.8 73.7 55.2 63.6 34.5 69.2 64.4 44.4 30 123.0 128.5 128.7 46.3 46.6 84.1 143.2 14.8 108.0 34.8 139.8 32.0 164.6 10.5 69.5 88.4 181.7 25.0 150.0 150.0	PnO3 := 64.6k Outrigger loading at position IV (VL) 0k and 40ft
30 0.0 39.2 39.1 74.4 74.4 51.0 35.3 82.8 58.0 64.2 41.8 78.2 42.9 70.7 54.9 63.2 38.3 66.8 <t< th=""><th>$P_{IVRF} := (P_{n3} - P_{n03}) \cdot \frac{W_L}{W_T} + P_{n03}$ $P_{IVRF} = 15.3 \cdot k$</th></t<>	$P_{IVRF} := (P_{n3} - P_{n03}) \cdot \frac{W_L}{W_T} + P_{n03}$ $P_{IVRF} = 15.3 \cdot k$
45 81.0 126.7 126.8 27.2 27.4 68.6 151.3 0.0 88.2 21.5 115.7 11.0 159.8 0.0 54.8 68.6 184.7 10.6 10.6 143.5 143.5	Left Front Outrigger
43 0.0 40.3 40.3 07.3 07.5 22.0 44.4 7.1 55.3 50.4 47.5 05.1 52.0 01.0 57.5 01.0 45.8 55.7 55.7 55.7 55.7 55.7 55.7 55.7 5	P _{n4} := 59.0k Outrigger loading at position IV 45 deg over Rear outrigger(VR) for 96.0k and 40ft
50 0.0 48.7 48.6 64.9 54.9 52.4 47.4 57.5 59.8 50.5 49.5 00.1 55.0 50.5 53.6 61.4 53.6 57.3 57.3 56.2 56.2 SH11830	P _{nO4} := 54.2k Outrigger loading at position IV (VR) 0k and 40ft
N - 7 -	$P_{IVLF} := \left(P_{n4} - P_{n04}\right) \cdot \frac{W_L}{W_T} + P_{n04}$ $P_{IVLF} = 57.9 \cdot k$
	Max Outrigger Reaction
	$OR_{max} := max \left(P_{IVLR}, P_{IVRR}, P_{IVRF}, P_{IVLF} \right) \qquad OR_{max} = 155.6 \cdot kip$

A Р feet (**)

25

Krupp KMK 5175

Outrigger Load

Job No.: 263.1

Of_

MADE BY KON DATE <u>11/26/2012</u> CK'D BY_____DATE_____

Sheet No_

Eingabedaten zur Berechnung des Bodendruckes beim LR 1300 Input for the calculation of ground pressure of LR 1300 usl. Konfiguration Boom 2821 -Länge Hauptausleger min 20.0 242.8 💌 ft Boom configuration Length of boom max 321.5 Luffing jib 2316 . Länge Wippspitze 65.6 ▼ ft Super lift No Fixed 1ib 1008 Length of luffing jib max 0.0 Winkel Hauptauslege 889 -(Nur bei Betrieb mit Wippspitze von Bedeutung) Boom angle (Angle is only necessary for operation with luffing jib) Länge Hauptausleger Leicht 226.4 💌 ft Length of high reach boom max 0.0 American Units 🔻 Länge Fixe Spitze 36.1 💌 ft Input - Units Length of fixed jib max 0.0 Winkel Fixe Spitze 15° • Lastfall Offset angle fixed jit Spur Unterwagen 22 💌 ft Load Case Track width Ballast am Unterwager 125.7 **•** 1000 lbs Ausladung 40.0 Carbody counterweigh Load radius 273.4 ¥ 1000 lbs 50.0 1000 lbs Ballast am Oberwagen Last Ballast am Derrick 120.0 1000 lbs Ballast-Radius 13.0 ft Super lift couterweight Radius couterweight Bodendruck Seite Diagramm siehe Blatt "ground pressure" Längs Eck Ground pressure Load over Diagramm see at sheet "ground pressure" nt (rear) side kg/cm³ 2.8 2.1 3.1 Gerät auf festem, anpassungsfähigem Untergrund 44.1 Crawlers on compact ground psi 39.8 29.9 kg/cm² 4.1 2.9 4.6 Gerät auf Beton, Stahlplatten etc. psi 58.3 41.2 65.4 Crawlers on concrete or steel plates Eckdaten für die Berechnung des Bodendruckes: Technical datas for the calculation of ground pressure Vertikalkraft am Drehkranz statisch 2105 kN 473113 lbf /ertical load at the slewing ring without dynamic effects Moment am Drehkranz statisch -3317 kNm -2446379 # lbf Moment at the slewing ring without dynamic effects Schwerpunkt Grundgerät, Ausleger und Spitze * Center of gravity of basic machine, boom and jib * Schwerpunkte Gewicht х z Bemerkung Center of gravity weight [1000 lbs] [ft] [ft] Grundgerät G 586.18 -9.324 6.990 Mit Ballast, 1 Hubseil, ohne Haken Basic machine With ballast, 1 hoist rone, without hook Ausleger B 70.74 15.080 112.919 Komplettes System incl. A-Bock 0.000 0.000 Komplettes System incl. obere A-Böcke Spitze * C 0.00 Complete system incl. upper A-frames -6.697 18.397 Kran Standard ohne Last und ohne Optionen Schwerpunkt 656.91 Center of gravity ane standard without load and without ontional add on 706.91 -3.394 34.623 (Weight of options up to 7 t are not considered) Geometrie mit Spitze System with boom and jib * 0.0 75.5 m 247.8 f 74.0 m $\overline{\mathbf{0}}$ *) Spitze fix oder wippbar 6

12.2 m

*) Fixed or luffing jib

Load: 22.7 t Radius: 12.2 m Boom: 74.0 m Fixed jib: 0.0 m Upper carriage: Counter weight at the -124.0 t Carbody: 57.0 t Forces at the slewing ring: Dimensions of the undercarriage 3316.8 [kNm] 1200.0 [mm] Moment Width of track shoes b Ver.Load 2104.5 [kN] Length of crawlers 8435.0 [mm] Center of gravity 1034.4 [mm] Track width 6800.0 [mm] S Weight of undercarriage 1102.0 [kN] **Tipping line** kk 7100.0 (mm Load over front: p max 274.9 kN/m² = 2.800 kg/cm² distribution of pressure in shape of trapezium Load over side 206.6 kN/m² 2.100 kg/cm² distribution of pressure in shape of trapezium p average Maximum ground pressure at an angle of: 35.0° (0° = longitudinal to the crawlers) 306.9 kN/m² 3.100 kg/cm² distribution of pressure in shape of trapezium p max Load longitudinal to the crawlers Distribution of pressure along the crawlers [mm] 4000 n 1000 2000 3000 5000 6000 7000 8000 9000 0.0 50.0 100.0 1 150.0 5 200.0 8 250.0 0 300.0 7 Load over the side Load over the side Distribution along the crawlers [mm] Ground pressure under front track 4000 6000 8000 2000 10000 206.6 kN/m² (all 0.0 29.38 psi 50.0 100.0 n2] Ground pressure 150.0 under rear track 110.2 kN/m² 200.0 15.67 psi 250.0 Load over the edge Distribution of pressure along the crawler [mm] 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 0.0 50.0 100.2 150.0 200. 250. 300.2 350.0

Calculation of ground pressure LR 1300

Crawlers on compact ground

Manufacturer Hydraulic/Truck Crane Outrigger Loads

Manitowoc/Grove

http://compucrane.manitowoc.com/

Liebherr

LICCON (Lliebherr Computer CONtrolling) program that needs a USB Key to operate, software comes with crane.

Tadano

https://www.tadano.co.jp/service/data/tdnsys/jackale/register.asp

Terex/Demag

http://www.cranimax.com

Program that needs a USB Key to operate, third party provider.

• Krupp

Outrigger load tables provided by manufacture.

Link-Belt

http://www.linkbelt.com/gbpl/gbnav.asp

Manufacturer Crawler Crane Loads

Manitowoc

http://www.manitowoccranes.com/en/Resources/tools

Liebherr

LICCON for the LR 1400. Excel spread sheets for the later models

• Demag/Terex

http://www.cranimax.com

Program that needs a USB Key to operate, third party provider

Link-Belt

http://www.linkbelt.com/gbpl/gbnav.asp

Kobelco

https://www.kobelco-kenki.com/en_cris/top/home.htm

Mantis

Some success calling a dealer for crawler loads

Supporting the LHE

- Crane must be level
- Surface protection
- Allowable ground bearing pressure
 - Loading diagrams, project requirements
- Cribbing/Dunnage design timber, steel plate or steel beam
- Structural analysis (i.e. bridge deck)

Siefert Associates LLC Ste 180 Church Street Naugatuck, CT 06770	Steel Plate Outrigger Dunnage Calculation		Job No.: XXX.X Sheet NoOf MADE BY <u>AAB</u> DATE <u>11/21/2012</u>
203.723.1477			CK'D BYDATE
Liebheer LTM	-1400 Hyd	draulic Crane	
Maximum Outrigger Reaction:	P := 151kip	Actual Steel Plate Length:	L _P := 7ft
Maximum Allowable Soil Bearing Pressure:	F _{max} := 3.5ksf	Actual Steel Plate Width L	ength: W _P := 7ft
Outrigger Length (Parallel to Length of Plate):	L _O := 2ft + 8in	Actual Steel Plate Thickne	ss: T _P := 2in
Outrigger Width (Parallel to Width of Plate):	$W_0 := 2ft + 8in$		Integrational processing second
Properties			
Minimum Yield Stress: F _Y = 3	6ksi	Maximum Allowable Shear Stre	ess: F _V := 0.4·F _Y = 14.4·ksi
Maximum Allowable Bending Stress: $F_B := 0$.75•F _Y = 27•ksi	Modulus of Elasticity:	E := 29000ksi
Calculations	P 2		$(L_P - L_O)$
Minimum Bearing Area on Surface: Amin ^{:=} F	= 43.143 ft ² max	Moment Arm:	$M_{arm} := \frac{(1 - 0)^2}{2} = 2.167 \text{ft}$
Actual Bearing Area: A := L _P ·W	$P = 49 \text{ft}^2$	Uniform Load Under Plate:	$q := \frac{P}{L_P} = 21.571 \cdot \frac{k}{ft}$
Actual Section Modulus of Plate: $S_{\chi} := \frac{\left(W_{F}\right)}{2}$	$\frac{1}{6} = 56 \cdot \ln^3$	Steel Plate Bending Moment:	$M \coloneqq \frac{\left(q \cdot M_{arm}^2\right)}{2} = 50.63 \cdot kip \cdot ft$
Cross Sectional Area of Plate: $A_C := W_P$	$T_{\rm P} = 168 \cdot {\rm in}^2$	Minimum Section Modulus:	$S_{xmin} := \frac{(M)}{F_B} = 22.504 \cdot in^3$
Moment of Inertia: $I := W_{p} \cdot \left(- \frac{1}{2} \right)$	$\left(\frac{\Gamma P^{3}}{12}\right) = 56 \cdot \ln^{4}$	Minimum Plate Thickness: T _r	$\min := \sqrt{\frac{(S_{xmin} \cdot 6)}{\min(W_{P}, L_{P})}} = 1.268 \cdot \ln \frac{1}{100}$
Actual Bearing Pressure on Surface: F _{actu}	al := $\frac{P}{A}$ = 3.08 ksf		■ ••*2 25 PLX
	check _{beari}	ing_pressure ^{:= if} (F _{max} > F _{actu}	al, "OK" , "Revise") = "OK"
Actual Bending Stress on Plate: FB_at	ctual := $\frac{M}{S_x} = 10.8$	ksi	
	check _{bend}	ling_stress ≔ if(F _B > F _{B_} actual	"OK" , "Revise") = "OK"
Actual Shear Stress on Plate:	ctual := 1.5·q·(Mar	rm) = 0.42·ksi	
	checkshea	r_stress := if(F _V > F _{V_actual} , "C	OK" , "Revise") = "OK"
Maximum Deflection:	$\left(M_{arm}\right) = \frac{\left(M_{arm}\right)^3}{8 \cdot E \cdot I}$	= 0.063·in	
Minimum Steel Plate Outrigge	r Dunnage C	entered Under all Out	triggers - Use:
Minimum Width o	f Plate:	$L_{p} = 7 ft$	
Minimum Length	of Plate:	$W_P = 7 \text{ ft}$	
Minimum Thickne	ss of Plate:	T _P = 2⋅in	
	MathCAD Dunna	ge Calc Steel	37

Sierert Associates, LLC Job N 180 Church Street Naugatuck, CT 06457	Imper: 259 Date: 11/26/2012	Che Date:	CK
Tel (203) 723-5830 Fax (203) 723-9346	By: KON	Bv:	
10. (200) 120 0000 1 0. (200) 120 0010	by. Non	Dy	
LIEBHERR LR-1300 CR	AWLER CRAN	E	
MIXED HARDWOOD CRANE MAT	DUNNAGE CA		ATION
INPUT			
Maximum Crawler Reaction		Pmax	7.373 kips/ft
Minimum Crawler Reaction		Pmin	1.044 kips/ft
Maximum Allowable Bearing Pressure		Fmax	5.15 kips/ft
Actual Timber Length		L	30.0 ft
Actual Timber Width		W	12.0 in
Actual Timber Depth		D	12.0 in
Width of Centerline of Crawlers		W	22.32 ft
Effective Tread Bearing Length		DL	27.67 ft
Tread Bearing Width		DW	3.93 ft
Design Value Bending (Beam and Stringers No. 2)		В	0.625 ksi
Design Value Shear (Beam and Stringers No. 2)		V	0.155 ksi
Load Duration Adjustment Factor (Ten Miniute Load)		CD	1.60
PROPERTIES			
Maximum Allowable Bending Stress			And the address of the second state
Fb = B x CD = 0.625 x 1.60 = 1.00 ksi		Fb	1.00 ksi
Maximum Allowable Shear Stress			
Fv = V x CD = 0.155 x 1.60 = 0.248 ksi		Fv	0.248 ksi
CALCULATION	S		
Rate of Pressure Under Tread:			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Pr = ((Pmax-Pmin)/DL)x1ft = ((7.37 - 1.04) / 27.67) x 1 = 0.23 kips / f	^2	Pr	0.23 kip/ft ²
Minimum Pressure on One 4 ft Pontoon:			
Q(min) = Pmax-(4*Pr) = 7.4 - 0.92 = 6.46 ft^2		Q(min)	6.46 kips/ft
Total Load on One 4 ft Pontoon:			
Qp = DW x 4ft x (Pmax+Q(min))/2 = 3.9 X 4ft X (7.37 + 6.46)/2 = 108	8 kips	Qp	108.8 kips
Minimum Required Surface Bearing Area:			
A(min) = Qp / Fmax = 108.8 / 5.15 = 21.1 ft^2		A(min)	21.1 ft ²
Effective Bearing Length Under 4ft Pontoon:			
C = L - w = 30.0 - 22.3 = 7.68 ft	(<= 22.32 ft Length OK)	С	7.68 ft
Moment Arm:			
Arm = (C -DW) / 2 = (7.68 - 3.93) / 2 = 1.87 ft		Arm	1.87 ft
Maximum Load on an Individual Timber:			
P = Qp / 4 = 108.8 / 4 = 27.2 kips		P	27.2 kips
Actual Section Modulus of Wood:			
Sx = (W x D^2)/6 = (12.00 x 12.00^2) / 6 = 288.0 in^3		Sx	288.0 in ³
Actual Bearing Pressure on Surface:			
F = P /(C x W) = 27.20 / (7.68 x (12/12)) = 3.54 k/ft^2	(<= 5.15 ksf OK)	F	3.54 kips/ft
Pontoon Bending Moment:			
M = (F x Arm^2) / 2 = (3.54 x 1.87^2) / 2 = 6.21k-ft		M	6.21 kip-ft
Actual Bending Stress in Timbers:			
fb = M / Sx = 6.21 /288.00 = 0.259 ksi	(<= 1.00 ksi OK)	fb	0.259 ksi
Actual Shear Stress in Timbers:			
fv = 1.5 x F x (Arm) / D = 1.5 x (3.54/144) x ((1.87 x 12) / 12 = 0.069 ksi	(<=0.248 ksi OK)	fv	0.069 ksi
RESULTS			
MIXED HARDWOOD CRAW	LER DUNNAGE		
ONE (1) LAYER OF 12" x 4'-0" x 30' TIME	BER CRANE MATS MI	NIMUM	
CENTERED LINDER	CRANE		
SCHIERED ONDER			

Siefert Associates LLC 180 Church Street Naugatuck, CT 06770 203.723.1477	Steel Plate O Cal	utrigger Dunnage culation	Sheet No_ MADE BY <u>AA</u> CK'D BY	Job No.: XXX.) Of BDATE <u>11/26/2011</u> DATE
Grove GMK-5210	lydraulic Crane	e - Top Dunnage l	_ayer - Ste	el Plate
Maximum Outrigger Reaction:	P := 151ki	Actual Steel Plate Le	ength:	$L_P := 3ft + 9in$
Maximum Allowable Soil Bearing Pre	essure: F _{max P} ≔	11ksf Actual Steel Plate W	fidth Length:	$W_P := 3ft + 9in$
Outrigger Length (Parallel to Length	of Plate): LOP:= 11	t + 11.6in Actual Steel Plate Th	nickness:	Tp := 1 in
Outrigger Width (Parallel to Width of	Plate): W _{O_P} = 1	ft + 11.6in		EST ALL STREET AND AND
Properties				
Minimum Yield Stress:	F _Y := 36ksi	Maximum Allowable She	ar Stress: F _{VP} := 1	0.4·F _Y = 14.4·ksi
Maximum Allowable Bending Stress	$F_{BP} := 0.75 \cdot F_{Y} = 27 \cdot F_{Y}$	ksi Modulus of Elasticity:	E := 290	DOOksi
Calculations			(Lo:	
Minimum Bearing Area on Surface	$A_{\min} \coloneqq \frac{P}{F_{\max} P} = 13.7$	ft ² MomentArm:	M _{arm_P} :=	$\frac{-0_{P}}{2} = 0.9 \text{ ft}$
Actual Bearing Area:	$A_{S} := L_{P'}W_{P} = 14.1 \text{ ft}^{2}$	Uniform Load Under Plat	te: $q_P := \frac{P}{L_P} = 40.2$	67. <u>k</u> ft
Actual Section Modulus of Plate:	$S_{X_P} := \frac{\left(W_P \cdot T_P^2\right)}{6} = 7$	5-in ³ Steel Plate Bending Moment	$M_{P} := \frac{\left(q_{P} \cdot M_{arm}\right)}{\binom{2}{\binom{M}{m}}}$	$\frac{1}{P}^{2} = 16 \cdot \text{kip} \cdot \text{ft}$
Cross Sectional Area of Plate:	$A_{C_P} \coloneqq W_{P} \cdot T_{P} = 45 \cdot in^2$	² Minimum Section Modulu	us: $S_{xmin_P} = \frac{(m_P)}{F_{BF}}$	$\frac{9}{2} = 7.1 \cdot in^3$
Moment of Inertia:	$I_{\mathbf{p}} \coloneqq W_{\mathbf{p}} \cdot \left(\frac{T_{\mathbf{p}}^{3}}{12}\right) = 3.8 \cdot in$	⁴ Minimum Plate Thickness	s: $T_{min_P} \coloneqq \sqrt{\frac{(S_x)}{min_x}}$	$\frac{\min_{P} \cdot 6}{(W_{P}, L_{P})} = 1 \cdot in$
Actual Bearing Pressure on Surfac	e: $F_{actual_P} := \frac{P}{A_S} =$	10.7·ksf	·	
	check _{beari}	ing_pressure_P := if(F _{max_P} >	Factual_P,"OK","F	Revise") = "OK"
Actual Bending Stress on Plate:	F _{B_actual_P} := M _F	= 25.6-ksi _P		
	checkbend	ing_stress_P ^{:= if} (F _{BP} > F _{B_} a	actual_P, "OK" , "Revi	ise") = "OK"
Actual Shear Stress on Plate:	Fv_actual_P = 1.5	q _P · <u>(Marm_P)</u> A _{C_P} = 1.2·ksi		
	check _{shea}	r_stress_P ≔ if(F _{VP} > F _{V_act}	ual_P,"OK" ,"Revise	") = "OK"
Maximum Deflection:	$d \coloneqq \left(q_{\mathbf{P}} M_{arm_{\mathbf{P}}}\right)^{-1}$	$\frac{\left(M_{arm_P}\right)^3}{8 \cdot E \cdot I_P} = 0.051 \cdot in$		
Minimum Steel Plate C	outrigger Dunnag	e Centered Under all	Outriggers - I	Use:
Minimur	m Width of Plate:	$L_{p} = 3.75 ft$	0.737764	
Minimur	n Length of Plate:	W _P = 3.75ft		
Minimur	m Thickness of Plate:	$T_{\mathbf{P}} = 1 \cdot in$		
L	MathCAD Du	nnage Calc Steel-		38

Siefert Associates LLC 180 Church Street Naugatuck, CT 06770 203.723.1477 Steel Plate Outrigger Dunnage Calculation Job No.: XXX.X Sheet No____Of____ MADE BY <u>AAB</u> DATE <u>11/26/2012</u> CK'D BY____DATE____

Grove GMK-5210Hydraulic Crane - Bottom Dunnage Layer - Timber Inputs Maximum Outrigger Reaction: P = 151.kip Timber Type: Type_T = "Mixed Hardwood" Maximum Allowable Soil Bearing Pressure Fmax T = 4ksf Nominal Timber Size Size_T = "12" x 12"" Outrigger Length (Parallel to Length of Timber): Lo T = Lp = 3.75ft Dressed Width of Timber W_{D T} := 12in Number of Timbers Outrigger Width (Parallel to Width of Timber): W_{O} T := W_{P} = 3.75 ft Num_T := ceil Try Timber Length: L_T := 11ft Actual Timber Width: $W_T := Num_T \cdot W_D T = 4 ft$ Actual Timber Thickness: $T_T := W_D T = 12 \cdot in$ Constants (American Wood Council NDS) Bending Design Value: (No. 2) B_T = 0.6·ksi Repetitive Member Adjustment Factor: (2"-4" Thick Only) C_{RT} = 1 Shear Design Value: (No. 2) V_T = 0.2 ·ksi Load Duration Adjustment Factor: (Ten Minute Load) C_{DT} ≔ 1.6 Properties Max Allowable Bending Stress: F_{BT} := B_T·C_{RT}·C_{DT} = 1·ksi Max Allowable Shear Stress: F_{VT} := V_T·C_{RT}·C_{DT} = 0.2·ksi Calculations $M_{arm_T} := \frac{(L_T - L_{O_T})}{2} = 3.6 \text{ ft}$ $\label{eq:minimum} \mbox{Minimum Bearing Area on Surface:} \quad \mbox{Amin}_T \coloneqq \frac{P}{F_{max}_T} = 37.8 \mbox{ft}^2 \mbox{ Moment Arm:}$ $A_T := L_T \cdot W_T = 44 \text{ ft}^2$ Uniform Load Under $q_T := \frac{P}{L_T} = 13.727 \cdot \frac{k}{ft}$ Actual Bearing Area: Wood Actual Section Modulus of Wood: $S_{X,T} := \frac{(W_T \cdot T_T^2)}{2} = 1152 \cdot in^3$ $M_{T} := \frac{\left(q_{T} \cdot M_{arm_{T}}^{2}\right)}{2} = 90.2 \cdot \text{kip} \cdot \text{fr}$ Timber Bending Moment $S_{xmin_T} := \frac{(M_T)}{F_{BT}}$ = 1082.3 · in³ Cross Sectional Area of Wood: A_{C} T := $W_{T} \cdot T_{T} = 576 \cdot in^{2}$ Minimum Section Modulus: $I_T := W_T \cdot \left(\frac{T_T^3}{12} \right) = 6912 \cdot in^4$ $\frac{(S_{xmin}T^{\cdot 6})}{min(W_{T}^{\cdot 1})}$ Minimum Timber = 11.6·in Moment of Inertia: Thickness $F_{act_T} := \frac{P}{A_T} = 3.43$ ks Actual Bearing Pressure on Surface: $check_{bearing_pressure_T} := if(F_{max_T} > F_{act_T}, "OK", "Revise") = "OK"$ MT Actual Bending Stress in Timbers: = 0.94 ks B_act_T := 🗖 S_{x_T} check_{bending} stress T := if(F_{BT} > F_B act T, "OK", "Revise") = "OK" (Marm_T - TT) Actual Shear Stress in Timbers: V_act_T ≔ 1.5·q_-= 0.09-ks check_{shear} stress T := if(F_{VT} > F_V act T, "OK", "Revise") = "OK" Minimum Top Layer Timber Outrigger Dunnage Centered Under all Outriggers - Use: Number of Timbers: $Num_T = 4$ Size of Timbers: Size_T = "12" x 12"" Minimum Length of Timbers: L_T = 11ft MathCAD Dunnage Calc Steel-39

Rigging Design

- Sling & rigging hardware capacities (charts)
- Inspected and/or tested
- Determining load in such components
- BTH-1 (lift lugs, spreader bars)
- Rigging protection

Lifted/Braced Load Analysis

- Rigging attachment points
 - Lift lugs, precast inserts, trunnions
- Stability during lift
 - Steel girder buckling
 - Precast cracking
 - Tilting operations
- Temporary bracing and stability after release form crane

Multiple LHE Lifts

- More complex
- Location of cranes at the beginning of lift
- Movement of cranes during lift
- Distribution of load between the cranes
 - Change of load distribution during lift
- Clearances between the load, fixed obstructions and the cranes themselves
- Communication during lift
- Reduced allowable loads +/- 75%

Decision Tree ASME P-30

- Review the list of Considerations
 - Hazards to Persons or Work Area
 - Impact Commercial or Environmental
 - Complexity of Lift, Repetitive, Capacities
 - Site Requirements
- Standard Lift verbal or brief written document
- Critical Lift fully written plan (engineered drawings and calculations)

		LIFT D	ATA SH	EET (Sing	jle Crane)	c	lear Form
Project:				Originator:			Date	
Job No.:				Checker:			Date	
Lift Company			Pre	paring Co.:				
Sheet No.				Revision:			Date	
Units of Measure:	U.S. (Ft	t - Lbs)	Length:	ft		Weight:	lbs	
Pay Load Name			Lift D	escription	· · · · · · · · · · · · · · · · · · ·			
Load details	<u></u>				Quantity	Wt./each	Weight	2
							0.0	lbs
							0.0	lbs
							0.0	lbs
							0.0	lbs
			Net load (a	actual weigl	nt of item t	o be lifted)	0.0	lbs
Manbasket lift (y/n)	NO		(NB: 5	0% crane ch	art reducti	on applied	when using	g manbasket
Rigging Bill of Mat	erial's				Quantity	Wt./each	Weight	
							0.0	lbs
							0.0	lbs
							0.0	lbs
							0.0	lbs
							0.0	lbs
							0.0	lbs
					1		0.0	IDS
							0.0	IDS
Crane Details	Man	ufacturer			Model No.	(-
Boom Longth Llood		BIOCK Capa	acity:		JID Type:	Lleod		
CWT's - Main		Parts of line	e actual		Jib Offset	Used:		Degrees
Gross Capacity Ded	uctions	i dito oi ini	ouordan		one enreet.			Degreee
Main Load	Block							lbs
Wire Rope	5							lbs
Jib Block								lbs
Aux Boom	Sheaves							lbs
Stowed jib	oif ():							IDS
Other (spe	city).			Gross	Canacity D	eductions:	0.0	lbe
Net crane canacities			Rar	lius 1	Rad	ius 2	Bar	lius 3
Actual Radius:			Tut		Tuu	ft	- Tun	ft ft
Chart Radius:				ft		ft		ft
Chart Canacity				lbs		lbs		lbs
Capacity if manbask	et used:		N/A	lbs		lbs		lbs
Total Capacity Dedu	ctions (from	above):		lbs		lbs		lbs
Net Capacity at hook	C .			lbs		lbs	a	lbs
Gross load to hook (load & riggir	ng)		lbs		lbs		lbs
Max % of capacity us	sed	0.0%						
Ground Bearing Pre	ssure:	Actual				Allowable		¢.
Min clearance boom	to obstruc	tion:	3 ft	Min clear	ance boom	to load or	spreader:	
Notes								
Attac	h sketch s	howing pla	an and ele	vation. Atta	ch relevan	t crane cha	art extract	
APPROVALS:	-	Signature			Title		2	Date
		20 Da						
				-				

16000 S-3				ANSI B30.5						And		
58 HL / 332			2,000 lb + 0,000 lb	000 lb								
<u>л</u>	`۲	/] n	\$ ⊪		Ķ	/] "	∎ 🗘	ادد fi		<u>k</u> .	/] "	\$ ⊪
1	[]	157.5	ft		[]	177.2	ft		[]	r	196.9	ft
28 302 334 45 505 55 60 65 55 60 65 56 60 65 56 00 75 80 90 95 100 105 110 125 120 1330 1350 145 155	83.0 82.3 81.5 80.8 80.0 79.3 776.7 77.8 80.0 77.7 88.0 65.0 65.0 65.0 65.2 65.2 65.2 65.2 49.6 41.8 88.9 358.8 44.5 44.8 83.2 44.5 41.8 35.8 35.8 49.6 41.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5	$\begin{array}{c} 164.6\\ 164.3\\ 164.0\\ 163.6\\ 163.2\\ 162.8\\ 162.4\\ 159.7\\ 158.2\\ 158.2\\ 158.4\\ 159.7\\ 158.2\\ 158.4\\ 159.7\\ 148.2\\ 148.4\\ 152.3\\ 144.5\\ 144.4\\ 130.5\\ 144.4\\ 130.5\\ 128.2\\ 121.5\\ 116.4\\ 134.4\\ 130.5\\ 128.2\\ 121.5\\ 116.4\\ 100.6\\ 97.7\\ 89.9\\ 81.0\\ 70.3\\ 56.9\\ \end{array}$	597,000 * 522,900 * 579,600 * 541,100 * 476,900 * 388,000 * 339,900 * 339,900 * 339,900 * 339,900 * 339,900 * 339,900 * 243,600 * 243,600 * 243,600 * 219,400 151,600 154,9000 154,9000 154,9000 154,90000 154,9000000000000000000000000000000	32 34 36 38 40 45 56 65 70 75 80 85 90 95 85 90 100 105 110 115 120 125 130 135 145 155 130 155 130 155 130 155 135 145 155 130 155 175 175 175 175 175 175 175 175 175	82.5 81.2 80.5 79.9 78.2 76.5 76.9 73.5 74.9 73.5 74.9 73.5 69.7 69.7 69.7 69.7 69.7 69.7 69.7 69.7	$\begin{array}{c} 183.9\\ 183.6\\ 183.2\\ 182.9\\ 182.5\\ 181.4\\ 180.2\\ 177.2\\ 175.5\\ 177.6\\ 177.6\\ 177.6\\ 177.6\\ 177.6\\ 169.3\\ 166.9\\ 164.3\\ 156.4\\ 155.5\\ 147.7\\ 143.6\\ 139.2\\ 134.4\\ 129.2\\ 134.4\\ 129.2\\ 134.4\\ 129.2\\ 134.4\\ 129.2\\ 134.4\\ 194.7\\ 134.5\\ 134.4\\ 194.7\\ 134.5\\ 134.4\\ 194.7\\ 103.1\\ 94.9\\ 73.4\\ 58.8\\ \end{array}$	483,000 * 467,100 * 451,800 * 437,300 * 238,900 * 238,900 * 238,900 * 241,200 * 241,200 * 241,200 * 241,200 * 249,000 * 197,900 180,000 164,600 159,200 129,200 111,700 14,300 171,700 170,700 170,700 170,700 170,700 170,700 170,700 170,700 170,700 170,700 170,700 170,700 170,700 170,700 170,700 170,700 170,700 170,700 170,700		$\begin{array}{c} 4 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 0 \\ 5 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 5 \\ 0 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	26 2159 43103 7.532 208 7.536 7.538 7.536 7.5377 7.5377 7.5377 7.5377 7.5377 7.5377 7.5377 7.5377 7.5377 7.5377 7.5377 7.5377 7.5377 7.53777 7.53777 7.53777 7.537777 7.537777777777	203.5 203.2 202.9 202.5 201.6 200.4 199.2 197.8 194.6 192.8 194.6 192.8 194.6 192.8 194.6 192.8 194.6 192.8 194.6 192.8 194.6 199.2 194.6 199.2 188.4 178.5 178.4 178.4 178.4 178.4 178.5 178.4 178.4 178.4 178.4 178.4 178.5 178.4 179.4	435,600 * 422,500 * 409,700 * 337,400 * 3367,100 * 333,400 * 295,300 * 295,300 * 295,300 * 296,300 * 216,000 * 197,000 130,200 138,400 110,200 138,400 110,200 103,200 103,200 103,200 90,300 84,700 74,900 70,500 66,500 59,200 59,200 59,200 52,700 * 46,300 *
				1/5	17.6	58.8	49,500 *	18	0 2 5 2 0 2 5 1	8.4 5.0 1.1 6.3	99.0 88.6 76.2 60.4	46,100 * 42,900 * 39,800 * 36,700 *

GENERAL NOTES

- THESE DRAWINGS AND THE ACCOMPANYING CALCULATIONS WERE PREPARED TO REPRESENT THE FOLLOWING: DEMOLITION OF GIRDER G1 AND FLOORBEAMS.
- 2. CRANE 1 TO BE A GROVE RT 760 HYDRAULIC CRANE, WITH 13.9K CTWT. AND 55 FOOT BOOM, OPERATED ON FULLY EXTENDED OUTRIGGERS.
- 3. CRANE 2 TO BE A MANITOWOC 4100W SERIES 1 CRAWLER, WITH 122.4k CTWT. AND 120 FOOT BOOM, OPERATED ON FULLY EXTENDED TRACKS.
- CRANES TO BE OPERATED PER MANUFACTURERS RECOMMENDATIONS, IN ACCORDANCE WITH ANSI/ASME B30.5 [LATEST REVISION] AND APPROPRIATE OSHA RULES.
- 5. THE CONTRACTOR IS RESPONSIBLE FOR THE ACTUAL OPERATION AND PROCEDURES. THESE PLANS ARE PROVIDED BASED ON THE BEST INFORMATION AVAILABLE AT THE TIME OF PREPARATION.
- CONTRACTOR MAY ADJUST PICK/DISPOSAL LOCATION INDICATED AS LONG AS THE CRITICAL RADII AND CLEARANCES ARE MAINTAINED.
- PICK AND RADII GIVEN IN LIFT DATA TABLE MUST NOT BE EXCEEDED. THE WEIGHT SHOWN IS THE MAXIMUM ALLOWABLE WEIGHT TO BE LIFTED AT THE CORRESPONDING RADIUS.
- REDUCE CRANE LOAD RATINGS TO ACCOUNT FOR WIND ON LOAD. CONSULT OPERATOR'S MANUAL FOR REQUIREMENTS WHEN WIND EXCEEDS 20 M.P.H. DO NOT OPERATE IN WINDS OVER 30 M.P.H. IF WINDS EXCEED 50 M.P.H. LOWER BOOM TO GROUND UNLESS MANUFACTURER'S INSTRUCTIONS INDICATE OTHERWISE.
- 9. CRANE IS TO BE OPERATED ONLY BY A LICENSED OPERATOR.
- 10. ALL DIMENSIONS AND WEIGHTS TO BE VERIFIED PRIOR TO THE LIFTING OPERATION.
- 11. NO CRANE WILL BE OPERATED IN A MANNER THAT WILL EXCEED ITS RATED CAPACITY AT ANY RADIUS AS SPECIFIED BY THE MANUFACTURER.
- 12. ALL TRUCKS/CRANES SHALL BE LOCATED ON-SITE OR WITHIN BARRICADED AREA AND NO LIFTING SHALL BE DONE OVER PEDESTRIANS, VEHICLES AND ADJACENT BUILDINGS.
- 13. CRANE MAY OPERATE IN VARIOUS POSITIONS ON SITE PROVIDING THAT THE PICK-RADII LIMITATIONS SHOWN ON THE DRAWINGS ARE NOT EXCEEDED
- THE TABLE OR CHART PREPARED BY THE CRANE MANUFACTURER TO DESCRIBE THE MAXIMUM LIFT AT ALL CONDITIONS OF LOADING SHALL BE POSTED IN EACH CRANE CAB IN CLEAR VIEW OF THE OPERATOR.
- 15. THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING THE WEIGHT OF EACH LIFT AND FOR INSURING THE STABILITY OF EACH UNIT DURING ALL PHASES OF ERECTION, INCLUDING LIFTING AND RELEASE OF THE UNIT.
- THE DESIGN GIRDER WEIGHT REPRESENTS THE MAXIMUM WEIGHT THAT CAN BE ERECTED BY THE SPECIFIED CRANE WHILE MEETING THE GEOMETRY CRITERIA STATED IN THESE DRAWINGS.
- ALLOWABLE GROUND BEARING PRESSURE TO BE 3.5 KSF MINIMUM ON ASPHALT.
- FLAGMAN SHALL STOP PEDESTRIANS AND VEHICLES WHEN LIFTING OVERHEAD [AS APPLICABLE].
- 19. MAXIMUM FLOORBEAM PICK WEIGHT TO BE 10.0 KIPS FOR CRANE 1.
- 20. MAXIMUM GIRDER WEIGHT TO BE 70.0 KIPS FOR CRANE 2.
- CRANE 1 & 2 IS CONFIGURED WITH 1.5 SAFETY FACTOR FOR PICKING CAPACITY.

MATERIAL NOTES

- . ALL STEEL PLATES TO BE GRADE A36 OR BETTER.
- 2. ALL WIRE ROPE SLINGS TO BE XIPS [EXTRA IMPROVED PLOW STEEL] IWRC 6X19 OR 6X37 WITH MECHANICALLY SPLICED ENDS.
- 3. ALL SHACKLES TO BE CROSBY OR EQUAL.
- TIMBER TO BE MIXED HARDWOOD No. 2 [BEECH-BIRCH-HICKORY, MIXED OAK OR MIXED MAPLE] OR BETTER.
- CRANE MATS TO BE TIMBER BLOCKING, 12" THICK, MIXED HARDWOOD NO. 2 [BEECH-BIRCH-HICKORY, MIXED OAK OR MIXED MAPLE] OR BETTER.

GIRDER DEMOLITION PROCEDURE:

- PRIOR TO CRANE MOBILIZATION DEENERGIZE POWERLINES UNDER BRIDGE AND SECURE TO ABUTMENT.
- SECURE INTERIOR EXISTING FLOORBEAMS BACK TO GIRDER G2 WITH LASHING PRIOR TO FINAL CUT. END FLOORBEAMS TO BE BLOCKED UP ON ABUTMENT PRIOR TO FINAL CUT.
- 3. MOBILIZE CRANE 2 INTO POSITION 3.
- 4. CONNECT RIGGING FROM CRANE 2 GIRDER G1.
- 5. CUT EXISTING FLOORBEAM BRACING AT MID SPAN.
- CUT EXISTING FLOORBEAM BRACING AT THE NORTH, SOUTH ABUTMENT.
- 7. RAISE GIRDER ABOVE BEARING ELEVATION.
- 8. SWING GIRDER G1 TOWARDS EXISTING NORTH ABUTMENT.
- 9. LOWER GIRDER G1 TO DISPOSAL LOCATION.
- TEMPORARILY SECURE THE GIRDER ON THE GROUND [BY CONTRACTOR'S MEANS AND METHODS].
- 11. DISCONNECT RIGGING.
- SWING CRANE BACK AND CONNECT ADEQUATE RIGGING TO FLOORBEAM.
- 13. REMOVE LASHING FROM GIRDER 2 AND CUT FREE FROM GIRDER 2.
- 14. REPEAT STEPS 7-11.
- 15. REPEAT STEPS 12-14 FOR ALL REMAINING FLOORBEAMS.
- 16. DEMOBILIZE CRANE 2 AS NEEDED.

FLOORBEAM DEMOLITION PROCEDURE:

- REMOVE CONCRETE BALLAST BY CONTRACTORS MEANS AND METHODS.
- REMOVE SLOPED STEEL BALLAST PLATES, DIAGONAL ANGLES, TRIANGULAR STIFFENER PLATES FROM BOTH SIDES OF GIRDERS G1 AND G2 BY CONTRACTOR'S MEANS AND METHODS.
- 3. MOBILIZE CRANE 1 INTO POSITION 1.
- 4. BURN DEMO HOLES ON THE HORIZONTAL BALLAST PLATE.
- CONNECT RIGGING ON THE HORIZONTAL BALLAST PLATE SUPPORTING THE FLOORBEAMS.
- 6. FLAME CUT THE HORIZONTAL BALLAST PLATE AND FLOORBEAM TO GIRDER CONNECTIONS AS SHOWN ON THESE DRAWINGS.
- WITH THE FLOORBEAM ASSEMBLY ENTIRELY SUPPORTED ON CRANE HOOK, SWING TO DISPOSAL LOCATION AS SPECIFIED BY CONTRACTOR'S MEANS AND METHODS.
- 8. DISCONNECT RIGGING.

CONTRACTOR:

MIDDLESEX CORPORATION

1 SPECTACLE POND ROAD

LITTLETON, MA 01460

- 9. REPEAT STEPS 4-8 FOR THE REMAINING FLOORBEAM UNITS
- 10. MOBILIZE CRANE 1 INTO POSITION 2.
- 11. REPEAT STEPS 4-8 FOR THE REMAINING FLOORBEAM UNITS.

CONSTRUCTION ENGINEER:

SIEFERT ASSOCIATES, LLC

180 CHURCH STREET

NAUGATUCK, CT 06770

DRAFTER

CHECKER

SUPERVISOR

BX

KON

0

NO.

11-21-12

DATE

12. DEMOBILIZE CRANE 1 AS NEEDED.

		26'-5 ¹ "
		13'-1 ³ , & CRANE 13' 3 ³ ,
21'-1" [EXTENDED]	CRANE CRANE 10'-6 <u>1</u> "	RIP:07
	PART	PLAN - MANITOWOC 4100 SERIES 1 CRAWLER
		0 4' 8' 12' 16'

STEEL GIRDER DEMOLITION

NOTES & PART PLAN

DWG. NO.

317.2-10

GENERAL NOTES:

- CRANE 1 TO BE A LIEBHERR LR-1160 WITH 229FT BOOM 121.3k CTWT AND 33.1k CARBODY WT ON EXTENDED TRACKS
- CRANE TO BE OPERATED PER MANUFACTURERS RECOMMENDATIONS, IN ACCORDANCE WITH ANSI/ASME B30.5-LATEST REVISION, APPROPRIATE OSHA RULES, AND RS 19-2 OF THE NEW YORK CITY BUILDING CODE.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR THE ACTUAL OPERATION AND PROCEDURES. THESE PLANS ARE PROVIDED BASED ON THE BEST INFORMATION AVAILABLE AT THE TIME OF PREPARATION. CONTRACTOR MAY ADJUST PICK/DISPOSAL LOCATION INDICATED AS LONG AS THE CRITICAL RADII AND CLEARANCES ARE MAINTAINED WITH.
- MAXIMUM SUSTAINED WIND SPEED DURING ALL LIFTING OPERATIONS SHALL NOT EXCEED 30 MPH, REDUCE PICKING LOADS BY 10% WHEN WIND SPEED IS 25MPH OR GREATER.
- CRANE IS NOT TO BE DELIVERED TO SITE BEFORE INSPECTION DATE AND IS TO BE OPERATED ONLY BY NEW YORK CITY LICENSED OPERATOR.
- 6. ALL DIMENSIONS AND WEIGHTS TO BE VERIFIED PRIOR TO THE LIFTING OPERATION.
- NO CRANE WILL BE OPERATED IN A MANNER THAT WILL EXCEED ITS RATED CAPACITY AT ANY RADIUS AS SPECIFIED BY THE MANUFACTURER.
- THIS INSTALLATION REQUIRES CONTROLLED INSPECTION OF THE CRANE SUPPORT AND PLACEMENT BY NEW YORK STATE LICENSED PROFESSIONAL ENGINEER OR REGISTERED ARCHITECT IFORMS 10E & 10FI.
- 9. THIS APPROVAL IS FOR CRANÉ PLACEMENT ONLY WITH PERMISSION TO OPERATE AND LIFT LOADS SUBJECT TO WRITTEN APPROVAL BY ENGINEER OR ARCHITECT DESIGNATED FOR CONTROLLED INSPECTION AS EVIDENCED BY SIGNED AND SEALED FORM 10E. COPY OF SIGNED AND SEALED FORM 10E TO BE KEPT ON CRANE AT ALL TIMES.
- 10. APPROVAL OF THIS APPLICATION IS GRANTED CONTINGENT UPON THE APPLICANT FURNISHING A LETTER OF APPROVAL FROM THE DEPARTMENT OF TRANSPORTATION AND A PERMIT FROM THE BUREAU OF HIGHWAY OPERATIONS [IF REQUIRED].
- 11. APPROVAL OF THIS APPLICATION IS GRANTED CONTINGENT UPON THE APPLICANT FURNISHING A LETTER OF APPROVAL FROM THE PORT AUTHORITY OF NY AND NJ.
- 12. DURING TRAVEL 12"x10FT CRANE MATS MUST BE CENTERED UNDER EACH CRAWLER AT ALL TIMES WHEN TRAVELING OVER POUR STRIP.
- 13. BOOM ANGLE RANGE DURING TRAVEL IS BETWEEN 61° AND 78° WITH BOOM OVER TOES ONLY AND NO LOAD.

MATERIAL NOTES:

- 1. ALL TIMBER TO BE MIXED HARDWOOD [BEECH-BIRCH-HICKORY, MIXED MAPLE OR MIXED OAK] NO.2. Fb = 1.00 k.s.i. ; Fv = .248 k.s.i. MINIMUM.
- 2. PLYWOOD TO BE APA STRUCTURAL 1 RATED SHEATHING EXT. 3/ THICKNESS.

ERECTION PROCEDURE

- 1. MOBILIZE CRANE INTO ON-SITE POSITION
- 2. TRANSPORT THE APPROPRIATE MATERIAL TO BUILDING SITE TO THE ASSEMBLY
- 3. LOWER HOOK BLOCKS AND ATTACH RIGGING
- 4. RAISE HOOK BLOCKS TO LIFT MATERIAL TO ERECT ON SITE
- 5. SWING WITH LOAD TO NECESSARY LOACTION
- 6. LOWER LOAD FOR TEMPORARY PLACEMENT OR ERECTION
- 7. DISCONNECT RIGGING
- 8. REPEAT STEPS 2-7 FOR THE REMAINDER OF THE MATERIAL ERECTION
- 9. DEMOBILIZE CRANE

CRANE ON-SITE GENERAL NOTES:

1

0

NO.

- PICK AND RADII GIVEN IN LIFT DATA TABLE MUST NOT BE EXCEEDED.
- 2. ALL TRUCKS SHALL BE LOCATED ON-SITE OR WITHIN BARRICADED AREA AND NO LIFTING
- SHALL BE DONE OVER PEDESTRIANS, VEHICLES AND ADJACENT BUILDINGS. 3. FLAGMAN SHALL STOP PEDESTRIANS AND VEHICLES WHEN LIFTING OVERHEAD [AS APPLICABLE].
- ONLY 1 CRANE SHALL BE ON-SITE AT ANY 1 TIME UNDER THIS CRANE APPLICATION.

WORK THIS DRAWING WITH: 226.36-1 THRU 226.36-3 WORLD TRADE CENTER PATH HALL CONSTRUCTION CONTRACT NO. WTC - 264.595 CONTRACTOR: SKANSKA/GRANITE/SKANSKA J.V.

		SKANSKA/GRANITE/SKANSKA J.V.	190 CHURCH STREET				
	11-30-11	NEW YORK, NY 10006	NAUGATUCK, CT 06770				
Τ	11/18/11						
1	11/14/11	MOBILIZATION/DEMOB	DWG. NO. 226.36-4				
	DATE	LR1160 - SECTION- NOTES					

Questions?

Thank You

