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2.1 Qualitative and 
quantitative approaches 
to risk assessment
David C. Simmons, Rudi Dauwe, Richard Gowland, Zsuzsanna 
Gyenes, Alan G. King, Durk Riedstra, Stefan Schneiderbauer

2.1.1
Risk assessment

2.1.1.1 
The importance of risk 

assessment

Risk assessment is a means not only to 
understand the risks that society (or a 
family or business) faces, with their 
potential probabilities and impacts, 
but also to provide a framework to 
determine the effectiveness of  disas-
ter risk management, risk prevention 
and/or risk mitigation.

It would be spurious to pretend that 
we fully understand all the hazards 
that society faces and their poten-
tial consequences. The process of 
risk assessment requires a structured 
approach. Without such a process, 
risks may be overlooked or implic-
it assumptions may be made. A risk 
assessment process requires transpar-
ency, opening up assumptions and 
options to challenge, discussion and 
review.

A structured approach is 
required to understand all 

the hazards that society 
faces and their potential 

consequences. This 
requires transparency, 

opening up assumptions 
to challenge, discussion 

and review.

Risk assessment and mapping guide-
lines for disaster management (Euro-
pean Commission, 2010) and Over-
view of  natural and man-made disaster 
risks in the EU (European Commis-
sion, 2014), provide a solid outline of 
the issues in a European context. The 
first outlines ‘the processes and meth-
ods of  national risk assessments and 
mapping in the prevention, prepared-
ness and planning stages, as carried 
out within the broader framework of 
disaster risk management’, whereas 

the second paper analyses 18 national 
contributions, identifying 25 hazards, 
both natural and man-made (mali-
cious and non-malicious).

However, as an example of  the im-
portance of  risk assessment, the ex-
perience of  the insurance industry is 
presented, an industry that has been 
transformed by the adoption of  an 
increasingly rigorous risk assessment 
and modelling process over the last 30 
years. The lessons learnt are relevant 
to policymakers and practitioners in 
government.

2.1.1.2 
Example: catastrophe 
risk and the insurance 

industry

As recently as the 1980s, the insurance 
industry’s catastrophe risk assessment 
was almost entirely based on histori-
cal experience or ‘rule of  thumb’ as-
sumptions. Catastrophes are, by defi-
nition, rare events. It is very unlikely 
that a mega event will have occurred 
in recent years and, even if  that were 
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the case, it may have had unique fea-
tures that may not reoccur. If  we had 
a historical event, would it cause simi-
lar damage if  it reoccurred? The glob-
al population is growing and getting 
wealthier, with the majority now con-
centrated in cities. Pressure of  popu-
lation growth has created the need to 
build on land that was wisely avoided 
by our forefathers. Growth may be 
unplanned with infrastructure, such 
as drainage not keeping up with the 
rate of  development. People like liv-
ing close to water, potential loss may 
be more than just scaling the historical 
loss by population change and wealth.

The need for a better approach was 
clear. In 1984 Don Friedman pub-
lished a paper that would form the 
template for modelling insurance 
catastrophe risk over the following 
30 years, breaking the process into 
hazard, exposure, vulnerability and 
financial loss. The first United States 
hurricane model to this template was 
produced by the reinsurance bro-
ker E.W. Blanch in 1987 (White and 
Budde, 2001), followed by the United 
States earthquake in 1988. Reinsur-
ance brokers and reinsurers also lead 
the field in Europe; however, the early 
1990s saw the rise of  three major ca-
tastrophe modelling firms, which still 
dominated the industry in 2016.

These models were stochastic models 
— based not on a few historic haz-
ard events but rather on a synthetic 
event made of  many thousands of 
events that attempt to represent the 
range of  possible events with their 
associated probabilities. The mod-
els required knowledge not only of 
what properties were insured and 
their value but also of  their location, 
construction type and occupation. 

Engineering principles augmented by 
historical loss analysis attempted to 
understand the relationship between 
the event’s manifestation at a particu-
lar location (e.g., peak ground acceler-
ation, peak gust speed and maximum 
flood depth) and its likely damage. 
From this an overall damage estimate 
for any given property portfolio for 
each of  the synthetic events could 
be calculated. If  the probability of 
each synthetic event is then applied, 
we could understand the distribution 
off  loss to the overall portfolio, for 
example what the annual average loss 
is and how big a loss from that hazard 
type can be expected every 5, 10, 20, 
50 and 100 years.

The process of modelling 
catastrophe risk has 

transformed the 
reinsurance industry by 

increasing knowledge, 
scientific engagement, 
technical competence 

and, most importantly, the 
resilience of the 

industry — its ability 
to pay claims.

Decisions could be made based on 
‘objective fact’, not subjective opin-
ion. Underwriters now had much 
more information to appropriately 
rate individual policies and to decide 
how much total risk they could accept 
across their portfolio and how much 
to off  lay. The concept of  risk/re-
turn entered the market. Firms began 

to clearly define their risk appetite to 
ensure appropriate levels of  financial 
security and then seek to maximise re-
turn within that appetite.

It has not been a painless process. In-
itially, many saw the models as a pan-
acea to the market’s problems. There 
was a tendency by those unaware of 
the complexity of  the models to be-
lieve the results. Arguably, the mod-
els were oversold and overbought: 
the vendors sold the models on their 
technical capabilities and the buyers 
bought them seeking certainty, but 
neither publically faced up to the in-
herent uncertainty within the models, 
despite growing pains in the process. 
However, this information has trans-
formed the industry. Twenty years ago 
the most technical reinsurance broker 
had perhaps 3 % of  staff  engaged in 
risk analytics, whereas now this has 
become 25 % to 30 %. Chief  risk of-
ficers were virtually unknown in the 
insurance industry 20 years ago; now 
they are embedded.

The models became a mechanism to 
raise debate above vague opinion to a 
discussion of  the veracity of  assump-
tions within the model. The models’ 
data requirements led to a massive 
increase in the quality and quantity 
of  data captured, leading in turn to 
improved models. Knowledge of  ca-
tastrophe risk has grown immeasura-
bly; firms have become smarter, more 
financially robust and therefore more 
likely to meet their claim obligations.

Whilst such modelling originally ap-
plied to catastrophe risk only, it has 
been extended to cover man-made 
hazards such as terrorism and more 
esoteric risk such as pandemic. In-
deed, the EU’s solvency II (Directive 
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2009/138/EC) an insurance regula-
tory regime, requires firms to under-
stand all the risk they face, insurance 
and non-insurance (e.g., market risk, 
counterparty risk and operational 
risk), with the carrot that if  they can 
demonstrate that they can adequately 
model their risks, then they may be al-
lowed to use the capital requirement 
implied by their model rather than the 
standard formula. Regulators rather 
smartly realise that any firm willing 
and able to demonstrate such capacity 
and understanding is less likely to fail.

2.1.1.3 
The key elements of risk 

assessment

Whilst the insurance industry is a spe-
cial case, others are noticing that the 
same methods can be used to manage 
risks to governments, cities and com-
munities. They can drive not only a 
better understanding of  the risks that 
society faces but also a means to de-
termine and justify appropriate risk 
planning, risk management strategies 
as well as  public and investment de-
cisions.

Risk assessment requires 
the identification of 

potential hazards as 
well as a knowledge of 
those hazard including 

their probability, what is 
exposed to that hazard 

and the vulnerability 
of that exposure to the 

hazard.

Indeed, it can be argued that the pro-
cess of  risk assessment and modelling 
is more important than the results ob-
tained. Risk assessment does not need 
to be as complex as a full stochastic 
model to add real value. Similarly, it 
is a common misunderstanding that 
a lack of  good-quality, homogeneous 
data invalidates risk assessment. Any 
risk assessment methodology requires 
assumptions to be brought to light 
and so opened to challenge. Assump-
tions can then be reviewed, compared 
and stressed, identifying areas of  in-
consistency, illogicality, sensitivity and 
where further research should be con-
centrated.

The key steps in risk assessment are 
the following.
•	 Identify the hazards which might 

affect the system or environment 
being studied A brain-storming 
session to identify all potential 
hazards should be done at an ini-
tial stage. It is important to think 
beyond events or combinations of 
events that have occurred in order 
to consider those that may occur.

•	 Assess the likelihood or probability 
that hazards might occur: inputs to 
this process include history, mod-
elling, experience, corporate mem-
ory, science, experimentation and 
testing. In practice, events with a 
very, very low probability (e.g. me-
teor strike) are ignored, focussing 
on ones more likely to occur and 
can be either prevented, managed 
or mitigated.

•	 Determine the exposure to the 
hazard, i.e. who or what is at risk.

•	 Estimate the vulnerability of  that 
hazard to the entity exposed in 

order to calculate the physical or 
financial impact upon that entity 
should the event occur. This may 
be obtained by a review of  histor-
ical events, engineering approaches 
and/or expert opinion and may 
include the ability of  the system 
to respond after the event so as to 
mitigate the loss.

•	 Estimate the potential financial 
and/or social consequences of 
events of  different magnitudes.

2.1.1.4
Risk tolerance

The likelihood of  the hazard and its 
consequences needs to be compared 
with the norms of  tolerability/ac-
ceptability criteria that society or an 
organisation has formulated. If  these 
criteria are met, the next step would 
be to manage the risk so that it is at 
least kept within these criteria and 
ideally lowered with continuous im-
provement.

If  the risk criteria are not met, the 
next step would be risk reduction by 
either reducing exposure to the haz-
ard or by reducing vulnerability by 
preventative measures or financial 
hedging, typically through traditional 
indemnity insurance that pays upon 
proof  of  loss, but also increasing-
ly through parametric insurance that 
pays upon proof  of  a defined event 
occurring. Insurance-like products 
can also be obtained from the finan-
cial markets by means of  catastrophe 
or resilience bonds.

In industry, reducing event likelihood 
is normally the preferred method, 
since this dimension is amenable to 
improving reliability and enhancing 
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the protective measures available. In 
many cases, these can be tested, so are 
therefore often a dominant feature of 
risk reduction. Estimating the poten-
tial severity of  the hazard is harder and 
often leaves much to expert opinion. 
If  risk cannot be credibly reduced in 
industry, it may lead to the cessation 
of  an activity. Ideally, a hazard would 
be completely avoided: a fundamental 
step in the design of  inherently safer 
processes.

However, for natural hazards and 
climate risk, where hazard likelihood 
reduction is often impossible, it is re-
quired to work on exposure and vul-
nerability. Building codes, for example 
the EU standard Eurocodes, encour-
age appropriate resilience in design 
and construction and can include 
‘build back better’ after an event. 
Spatial planning and the delineation 
of  hazard zones of  various levels can 
promote development in areas less 
exposed to risk. 

Risks can never be 
eliminated but they can 

be managed and their 
consequences reduced, 
at a cost. Defining risk 

tolerance allows informed, 
cost-effective risk 

management decisions.

The insurance mechanism can be 
used to encourage appropriate risk 
behaviours, penalising poor construc-
tion, maintenance or location by re-
duced cover or higher premiums and 
rewarding mitigation measures, e.g. 

retro-fitting roof  ties in tropical cy-
clone-exposed areas or installing irri-
gation systems for crops by premium 
reductions.

2.1.2
Risk identification 

process

2.1.2.1
The importance of 
risk identification

It is necessary to identify unwanted 
hazardous events (i.e., atypical sce-
narios) and their consequences. It is 
very important to include all these in 
a study. If  a possible hazard is over-
looked, it will never be assessed. Un-
fortunately, there are many examples 
of  this failure (Gowland, 2012). 

In all risk assessment methods, the 
failure to include these ‘atypical’ sce-
narios will present problems. Exam-
ples include the major fire and explo-
sion at Buncefield (December 2005) 
and the tsunami that inundated the 
Fukushima nuclear power station 
(March 2011). Identification of  all 
potential hazards is absolutely funda-
mental in ensuring success.

The United Kingdom Health and 
Safety Executive has identified and 
reviewed almost 40 hazard identifica-
tion methods.

The scope and depth of  study is im-
portant and relevant to purpose and 
the needs of  users of  the assessment. 
It is necessary to identify all hazards 
so that a proper risk assessment may 
be made. When we are open to con-
sidering potential deviations we need 

to make sure that we are open-mind-
ed enough to consider all possibilities 
even when they may seem to be re-
mote.

It is important to consider all poten-
tial hazards, natural and man-made, 
and their possible interactions and 
consequences. The process should 
not be limited to events known to 
have happened in the past, but also to 
consider what could happen.

Methods in use greatly depend on 
the experience of  the persons carry-
ing out the study. This is normally a 
team activity, and how it is made up is 
important and should be drawn from 
persons familiar with the technology 
or natural phenomena and the loca-
tion being considered. Techniques 
adopted range from relatively un-
structured ‘brainstorming’ through to 
the more structured ‘what if ’ analysis. 

Potential risks may not be 
obvious and may not have 

occurred in the past. It is 
vital to seek to identify 

what could occur as well 
as the consequences.

Other more formalised processes ex-
ist in industry, though, including fail-
ure mode and effect analysis (FMEA) 
and the highly structured hazard and 
operability (HAZOP) study, both 
of  which look to identify hazardous 
events and to locate causes, conse-
quences and the existing preventive 
measures. FMEA was developed for 
the automobile industry and HAZOP 
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was developed for the chemical and 
process industry. However, similar 
studies can be applied to any field of 
risk. For example, the HAZOP (Tyler 
et al., 2015) use of  guide words and 
deviations, which might seem to be 
limited to the industry where first ap-
plied, can be adjusted or replaced with 
those relevant to the field being stud-
ied; this has been demonstrated in the 
mining industry in Australia, where 
modified chemical industry methods 
have proved useful.

2.1.2.2
What if

This is a form of  structured team 
brainstorming. Once the team under-
stands the process or system being 
assessed and the kind of  risks (po-
tential exposures and vulnerabilities), 
each discreet part or step is examined 
to identify things that can go wrong 
and to estimate their possible conse-
quences.

A team of experts 
brainstorming is one way 

to flush out potential 
risks, but it is important 

to use a panel of experts 
whose experience covers 

all aspects of risk.

In order to carry this out successful-
ly, we must stress the need for the 
team to be properly qualified and to 
have a full set of  data relating to the 
system being studied. This would in-
clude operating instructions, process 

flow sheets, physical and hazardous 
properties of  the materials involved, 
potentially exposed persons, environ-
ment or assets, protective systems. 
Most users will simply estimate the 
likelihood and severity of  conse-
quences in a similar way to that used 
in risk matrix applications.

A brainstorming exercise has the side 
benefit of  encouraging a wide partic-
ipation in the risk identification and 
assessment process, increasing own-
ership of  the ultimate conclusions.

2.1.2.3
Failure mode and effect 

analysis (FMEA) 

FMEA is a rigorous, step-by-step 
process to discover everything that 
could go wrong in a task or process, 

the potential consequences of  those 
failures and what can be done to pre-
vent them from happening. In this 
way, it can be used in risk assessment 
in industry. As shown in Figure 2.1, it 
comprises a systemised group of  ac-
tivities designed to:
•	 recognise and evaluate the poten-

tial failure of  a process or equip-
ment and their effects;

•	 identify actions which could elim-
inate or reduce the chance of  po-
tential failure;

•	 document the process.

It captures:
•	 the failure mode, i.e., what could go 

wrong;
•	 the effect analysis, i.e., how it would 

happen, how likely it is to go wrong 
and how bad it would be.

A graphic illustration of the FMEA process.
Source: courtesy of authors

FIGURE 2.1

Define requirements 
and expected outcomes

How can we detect the 
onset of failure? Identify failure modes What are the potential 

effects of failure mode?

Control Plan Identify possible causes How serious are these 
effects?

DETECTION 
AVAILABILITY (D) X OCCURANCE 

PROBABILITY (P) X SEVERITY (S)
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A very good example of  a high-risk 
and high-priority project is the space 
shuttle where we put fragile human 
lives in a tin can and send them to 
space, hoping to get them home safe-
ly. Considering the complexity of  the 
shuttle, there are many possible items 
which can fail, and they all have in-
dividual failure modes and effects. 
Lives are at risk and space shuttles 
are expensive. FMEA is a tool used 
to provide a structured process to un-
derstand and thereby minimise risk.

FMEA is a structured 
what-if process widely 

used in the process 
industries and provides 

a template for other 
potential applications.

The three distinct assessments for 
each of  the three strands of  this 
methodology, detection availability, 
occurrence probability and severity, 
are each given a rating: D, P and D, 
respectively. Risk ranking is calculated 
by multiplying these factors to give a 
single rating D x P x S. A risk matrix 
may be used to illustrate this process 
(see Chapter 2.1.4.3.).

2.1.2.4
Hazard and operability 

study (HAZOP)

The technique of  HAZOP has been 
used and developed since the 1970s 
for identifying potential hazards and 
operability problems caused by ‘devia-
tions’ from the design intent of  a part 

of  a production process or a proce-
dure for new and existing operations. 
The technique is most associated with 
identifying hazardous deviations from 
the desired state, but it also greatly 
assists the operability of  a process. 
In this mode it is very helpful when 
writing operating procedures and job 
safety analysis (Tyler et al., 2015).

Processes and procedures all have a 
design intent which is the desired nor-
mal state where operations proceed in 
a good way to make products in a safe 
way.

With this in mind, equipment is de-
signed and constructed, which, when 
it is all assembled and working to-
gether, will achieve the desired state. 
In order to achieve this, each item of 
equipment will need to consistently 
function as designed. This is known 
as the ‘design intent’ for that particu-
lar item or section of  the process.

HAZOP is a what-if 
process identifying 

potential hazards caused 
by ‘deviations’ from the 

design intent of a part of 
a production process or 

procedures.

Each part of  this design intent speci-
fies a ‘parameter’ of  interest. For ex-
ample, for a pump this could be   flow, 
temperature  or pressure. With a list 
of  ‘parameters’ of  interest, we can 
then apply ‘guide words’ to show de-
viations from the design intent. Inter-
esting deviations from the design in-

tent in the case of  our cooling facility 
could include less or no flow of  wa-
ter, high temperature or low (or high) 
pressure. When these deviations are 
agreed, all the causes associated with 
them are listed. For example, for no 
or less flow, causes will include pump 
failure, power failure, line blockage, 
etc. 

The possible hazardous consequenc-
es can now be addressed, usually in a 
qualitative manner without significant 
calculation or modelling. In the exam-
ple, these might be, for example, for 
line blockage pump overheats or loss 
of  cooling to process, leading to high 
temperature problems with product.

These simple principles of  the meth-
od are part of  the study   normally 
carried out by a team  that includes 
designers, production engineers, tech-
nology specialists and, very impor-
tantly, operators. The study is record-
ed in a chart as in the study record. 
A decision can  then be made about 
any available safeguards  or extra ones  
that might be needed — based on the 
severity or importance of  the conse-
quence.

It is believed that the HAZOP meth-
odology is perhaps the most widely 
used aid to loss prevention in indus-
try. The reason for this can   be sum-
marised as follows:
•	 it is easy to learn;
•	 it can be easily adapted to almost all 

the operations that are carried out 
within process industries;

•	 no special level of  academic quali-
fication is required.
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2.1.3
Risk analysis  

methodologies

2.1.3.1
Types of risk analysis

Risk analysis is a complex field requir-
ing specialist knowledge and expertise 
but also common sense. It is not just 
a pure scientific field but will neces-
sarily  include judgements over issues 
such as risk appetite and risk manage-
ment strategy. It is vital that the pro-
cess be as comprehensive, consistent, 
transparent and accessible as possible. 
If  a risk cannot be properly under-
stood or   explained, then it is difficult 
if  not impossible for policymakers, 
companies and individuals to make 
rational choices.

The appropriate form of 
risk analysis will depend 
on the purpose and the 

data available from 
simple scenarios to full 

probabilistic analysis, 
but all can lead to 

better decision-making.

Currently, there is no universally 
agreed risk analysis method applied 
to all phenomena and uses, but  the 
methods used rather are determined 
by a variety of  users, such as indus-
trial and transport companies, regula-
tors and insurers. They are selected on 
the basis of  their perceived relevance, 
utility and  available resources. For 

example, a method adopted in indus-
try may not be suitable in the field of 
natural hazards. Legal requirements 
may also dictate the degree of  study 
as well as such factors as the ‘allowa-
ble’ threat to the community. This last 
matter is common in ‘deterministic’ 
risk analysis where the requirement 
may be that there is no credible risk 
for a community in the location of  an 
industrial operation.

Deterministic methods consider the 
consequences of  defined events or 
combinations of  events but do not 
necessarily consider the probability of 
these events or guarantee that all pos-
sible events are captured within the 
deterministic event set. Often this is 
the starting point for risk analysis. At 
the other extreme, stochastic or prob-
abilistic analysis attempts to capture 
all possible outcomes with their prob-
abilities; clearly coming with a much 
higher data and analytical requirement 
and, if  correct, forming the basis for a 
sophisticated risk assessment process.

2.1.3.2
Deterministic methods

Deterministic methods seek to con-
sider the impact of  defined risk events 
and thereby prove   that  consequenc-
es are either manageable or capable of 
being managed. They may be appro-
priate where a full stochastic model is 
impossible due to a lack of  data; pro-
viding real value whilst a more robust 
framework is constructed.

Risk standards may be set at  nation-
al and international level and, if  fully 
complied with, are believed to prevent 
a hazard that could impact the com-
munity. This is akin to the managing 
of  risk in the aviation industry, where 

adherence to strict rules on the design 
and operation of  aircraft and flights 
has produced a very safe industry. 
The same approach to rule- based op-
erations exists in some countries and   
companies.

How are deterministic events framed? 
For example, to check the safety of 
an installation against a severe flood,   
severity is assessed according to the 
worst recently seen, the worst seen in 
the last 20 years or the worst that may 
be expected every 100 years based on 
current climatic conditions and cur-
rent upstream land use. A different 
choice of  event will have a different 
outcome and potentially a very differ-
ent conclusion about manageability. 
Can we ensure that all deterministic 
events used in risk assessment across 
hazards are broadly equivalent in 
probability? If  not, assessments and 
conclusions may be skewed.

Deterministic methods 
seek to consider the 

impact of defined risk 
events and thereby prove 

that  consequences 
are either manageable 

or capable of being 
managed.

In recent times there has been a shift 
from a totally rule- based system to 
one where an element of  qualitative, 
semi- quantitative and quantitative 
risk assessment (QRA) may influence 
decisions. But deterministic risk as-
sessment is also carried out as a reali-
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ty check for more complex stochastic 
models and to test factors that may 
not be adequately modelled within 
these models.

For example, over the past 20 years 
the insurance industry has enthusias-
tically embraced advances risk assess-
ment techniques, but deterministic 
assessment of  the form ‘if  this hap-
pens, this is the consequence’ is still 
required by regulators. They may be 
referred to as:
•	 a scenario test, where a defined 

event or series of  events is pos-
tulated and the consequences as-
sessed;

•	 a stress test, where pre-agreed as-
sumptions of  risk, for example 
implied within a business plan 
(e.g. interest rate assumptions), are 
stressed and challenged to deter-
mine their impact on results and 
company sustainability;

•	 a reverse stress test, where events 
or combinations of  events are pos-
tulated that could cause insolvency 
of  the firm if  unhedged.

Scenario, stress and reverse stress 
tests may be informed by science and 
modelling or expert opinion, or both, 
and often an assessment of  probabili-
ty will be estimated. Insurance regula-
tors often focus on a 0.5 % probabili-
ty level as a benchmark, i.e. the worse 
that may be expected every 200  years. 
If  stress and scenario tests give num-
bers for an estimated 1 in 200 events 
that the stochastic model says could 
happen, say, every 10  years, then it 
casts doubt on the assumptions with-
in the model or the test itself  — they 
could be assessed and challenged. 
Similarly, the framing of  multievent 

reverse stress tests may challenge as-
sumptions about dependency and 
correlation within the model.

Realistically, deterministic methods 
are not 100 % reliable, taking as they 
do only a subset of  potential events, 
but their practical performance in 
preventing hazard -impacting com-
munities is as good and in some cas-
es even better than other methods. If 
properly presented they can be clear, 
transparent and understandable. The 
process of  developing deterministic 
stress and scenario sets can also be a 
means to engage a range of  experts 
and stakeholders in the risk analysis 
process, gaining buy-in to the process.

Whether rules and standards derived 
from such tests work may depend 
on the risk culture of  the region or 
firm where the risk is managed. Some 
risk cultures have a highly disciplined 
approach to rules, whereas others al-
low or apparently tolerate a degree 
of  flexibility. Furthermore, the ef-
fort required to create, maintain and 
check for compliance where technical 
standards are concerned is consider-
able and may be beyond the capacity 
of  those entrusted with enforcement.

2.1.3.3
Semi-quantitative 

risk analysis

Semi-quantitative risk analysis seeks 
to categorise risks by comparative 
scores rather than by explicit proba-
bility and financial or other measur-
able consequences. It is thus more 
rigorous than a purely qualitative ap-
proach but falls short of  a full com-
prehensive quantitative risk analysis. 
But rather like deterministic methods, 
it can complement a full stochas-

tic risk analysis by inserting a reality 
check. Semi-quantitative methods can 
be used to illustrate comparative risk 
and consequences in an accessible way 
to users of  the information. Indeed, 
some output from complex stochas-
tic models may be presented in forms 
similar to that used in semi-quanti-
tative risk analysis, e.g., risk matrices 
and traffic light rating systems (for ex-
ample where red is severe risk, orange 
is medium risk, yellow is low risk and 
green is very low risk).

Semi-quantitative 
risk analysis seeks 

to categorise risks by 
comparative scores 

rather than by explicit 
probability and financial 

or other measurable 
consequences.

A risk matrix is a means to commu-
nicate a semi-quantitative risk assess-
ment: a combination of  two dimen-
sions of  risk, severity and likelihood, 
which allows a simple visual compari-
son of  different risks.

Severity can be considered for any 
unwanted consequence such as fire, 
explosion, toxic release, impact of 
natural hazards (e.g. floods and tsu-
namis) with their effects on workers 
and the community, environmental 
damage, property damage or asset 
loss. A severity scale from minor to 
catastrophic can be estimated or cal-
culated, perhaps informed by some 
form of  model. Normal risk matri-
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ces usually have between four and six 
levels of  severity covering this range 
with a similar number of  probability 
scales. There is no universally adopted 
set of  descriptions for these levels, so 
stakeholders can make a logical selec-
tion based on the purpose of  the risk 
assessment being carried out. The ex-
ample depicted in Figure 2.2, below, 
is designed for risk assessment by a 
chemical production company and is 
based on effects on people. Similar 
matrices can be produced for envi-
ronmental damage, property or capi-
tal loss.  See also Chapter 2.5, Figure 
2.21 for the risk matrix suggested by 
European Commission (2010).

In this illustrative example the severi-
ty scale is defined as: 
• insignificant: minor injury quick re-

covery;
• minor: disabling injury;
• moderate: single fatality;
• major: 2 -10 fatalities;
• severe: more than 11 fatalities.

Similarly, the likelihood scale is de-
fined as:
• rare: no globally reported event of

this scale — all industries and tech-
nologies;

• unlikely: has occurred but not relat-
ed to this industry sector;

• possible: has occurred in this com-
pany but not in this technology;

• likely: has occurred in this location
— specific protection identified 
and applied;

• almost certain: has occurred in this
location — no specific protection 
identified and applied.

When plotted in the matrix (Figure 
2.2), a link may be provided to rank 
particular risks or to categorise them 
into tolerable (in green), intermediate 
(in yellow and orange) or intolerable 
(in red) bands. A risk which has severe 
consequences and is estimated to be 
‘likely’ would clearly fall into the intol-
erable band. A risk which has minor 
consequences would be intermediate 

and ‘very rare’ in likelihood would be 
in the tolerable band. For risks which 
appear in the intolerable band, the 
user will need to decide what is done 
with the result. 

There are choices to be made, either 
to reduce the severity of  the conse-
quence or the receptor vulnerability 
and/or to reduce the event’s likeli-
hood. All may require changes to the 
hazardous process. Many users would 
also require intermediate risks to be 
investigated and reduced if  practica-
ble.

Some users apply numerical values to 
the likelihood and/or severity axes of 
the matrix. This produces a ‘calibrat-
ed’ matrix.

The following matrix, in Figure 2.3 
is derived from the Health and Safe-
ty Executive’s publication Reducing 
risks, protecting people (2001) as 
well as from  its final report on the 

A risk matrix
Source: courtesy of authors

FIGURE 2.2

Likelihood
Consequences

Insignificant Minor Moderate Major Severe

Almost Certain M H H E E

Likely M M H H E

Possible L M M H E

Unlikely L M M M H

Rare L L M M H
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Buncefield fire and explosion, Safety 
and environmental standards for fuel 
storage sites (2009).

Sometimes matrices are used to com-
pare different risk types as per this 
example from the United Kingdom’s  
National risk register of  civil emer-
gencies report (2015). Such matrices 
are intuitively attractive, but in prac-
tice they can be misleading (Cox, 
2008).

Very often an assessment of  both 
frequency and severity is highly sub-
jective and so can greatly differ , even 
when produced by two people with 
similar experiences; the impact of 
expert judgement can be profound 
(Skjong and Wentworth, 2001). It is 
vital  for reasoning to be given for any 

A comparative risk matrix
Source: United Kingdom Cabinet Office (2015)

A calibrated risk matrix
Source: Health and Safety Executive (2001, 2009) 

FIGURE 2.4

FIGURE 2.3
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assessment, therefore allowing debate 
and challenge.

If  subject to a full probabilistic mod-
elling exercise, we would  not just 
have one value for coastal flooding 
but rather a complete distribution of 
coastal floods from frequent but very 
low severity to rare  but very high se-
verity. 

Which point of  the curve should be 
picked for each peril? Different selec-
tions will give very different impres-
sions of  comparative risk.

Semi-quantitative methods can be 
a useful stepping stone towards a 
full quantitative system, particularly 
where detailed data are lacking, and 
can be used as a means to capture 
subjective opinion and hold it up to 
challenge, opening debate and be-
coming a framework to identify where 
additional analytical effort is required.

2.1.3.4
Probabilistic risk  

analysis
This method originated in the Cold 
War nuclear arms race, later adopted 

by the civil nuclear industry. It typi-
cally attempts to associate probability 
distributions to frequency and severi-
ty elements of  hazards and then run 
many thousands of  simulated events 
or years in order to assess the likeli-
hood of  loss at different levels. The 
method is often called Monte Carlo 
modelling after the gaming tables of 
the principality’s casinos. These meth-
ods have been widely adopted by the 
insurance industry, particularly where 
problems are too complicated to be 
represented by simple formulae, in-
cluding catastrophic natural hazard 
risks.

Anonymised insurer comparative event exceedence curve 
Source: Willis Towers Watson

FIGURE 2.5

0m

10m

20m

30m

40m

50m

60m

70m

0 50 100 150 200 250 300 350 400 450 500

Event return period [years]

Ev
en

t l
os

s 
si

ze
 [E

U
R]

Earthquake Tropical cyclone



CHAPTER 2 UNDERSTANDING DISASTER RISK: RISK ASSESSMENT METHODOLOGIES AND EXAMPLES

55

A commonly used generic term for 
these methods is QRA or probabil-
istic or stochastic risk modelling. To-
day it is frequently used by industry 
and regulators to determine individ-
ual and societal risks from industries 
which present a severe hazard con-
sequence to workers, the community 
and the environment. EU legislation 
such as the Seveso III directive (Di-
rective 2012/18/EU) requires risks 
to be mapped and managed to a tol-
erable level. These industrial require-
ments have resulted in the emergence 
of  organisations, specialists and con-
sultants who typically use specially 
designed software models. The use 
of  probabilistic methods is spreading 
from the industrial field to others, for 
example the Netherlands flood de-
fence planning.

Probabilistic or stochastic 
risk analysis seeks to 

understand and model all 
potential events with their 

associated probabilities 
and outcomes, allowing a 
sophisticated cost/benefit 

analysis of different risk 
management strategies.

Stochastic risk modelling has been 
wholeheartedly embraced by the 
re/insurance industry over the past 
30 years, particularly for natural ca-
tastrophes, though increasingly for all 
types of  risks. EU solvency II regu-
lation (Directive 2009/138/EC), a 
manifestation of  the advisory insur-
ance core principles  for regulators set 

by the International Association of 
Insurance Supervisors in Basel (IAIS, 
2015), allows companies to substitute 
some or all of  their regulatory capital 
calculation with their own risk models 
if  approved by their regulatory and 
subject to common European rules.

The main advantage of  a quantitative 
method is that it considers frequency 
and severity together in a more com-
prehensive and complex way than 
other methods. The main problem 
is that it can be very difficult to ob-
tain data on risks: hazard, exposure, 
vulnerability and consequential se-
verity. If  it is difficult to understand 
and represent the characteristics of 
a single risk then it is even harder to 
understand their interdependencies. 
There is inevitably a high level of  sub-
jectivity in the assumptions driving 
an ‘objective’ quantitative analysis. A 
paper by Apostolakis (2004) on QRA 
gives a coherent argument for appro-
priate review and critique of  model 
assumptions. The level of  uncertainty 
inherent in the model may not always 
be apparent or appreciated by the ul-
timate user, but   the results of  a fully 
quantitative analysis, if  properly pre-
sented, enhance risk understanding 
for all stakeholders.

Often the process of  building a 
probabilistic model is as valuable as 
the results of  the model, forcing a 
structured view of  what is known, 
unknown and uncertain and bringing    
assumptions that may otherwise be 
unspoken into the open and thereby    
challenging them.

Typically for a full stochastic mod-
el, severities for each peril would be 
compared for different probability 
levels, often expressed as a return pe-

riod; the inverse of  annual probability, 
i.e. how many years would be expect-
ed to pass before a loss of  a given size 
occurred.

Figure 5 gives an example of  output 
of  such a model, here showing the 
size of  individual loss for two differ-
ent perils  with return periods of  up to 
the worst that may be expected every 
500 years. Note that a return period is 
a commonly used form of  probability 
notation. A 1-in-200 year loss is the 
worst loss that can be expected every 
200 years, i.e. a loss with a return pe-
riod of  200 years. A return period is 
the inverse of  probability; a 1- in -200 
year event has a 0.5 % probability 
(1/200).

We can see that, for example, every 
100 years the worst tropical cy-
clone loss we can expect is over 
EUR 28 million compared to the 
worst earthquake loss we can expect 
every 100 years of  EUR 10 million.

In fact, a tropical cyclone gives rise 
to significantly higher economic loss 
than an earthquake, up until the 1 -in- 
450-year probability level. But which 
is the most dangerous? A more likely 
event probabilities tropical cyclone 
is much more damaging, but at very 
remote probabilities it is earthquake. 
Notice too the very  significant dif-
ferences in loss estimate for the prob-
ability buckets used in the  National 
risk register for civil emergencies re-
port (United Kingdom Cabinet Office 
2015) risk matrix example in Figure 
2.4. The national risk register looks at 
the probability of  an event occurring 
in a 5-year period, but compares the 
1-in-40-year loss to the 1-in-400-year 
loss, broadly equivalent to the 1-in-
200 to 1-in-2 000 5-year bucket: the  
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loss for both perils at these probabili-
ty levels is very different.

Terms like ‘1-in-100 storm’ or ‘1-in 
-100 flood’ are often used in the pop-
ular press, but it is important to define 
what is meant by these terms. Is this 
the worst flood that can be expected 
every 100 years in that town, valley, 
region or country? It is also impor-
tant not just to look at the probabili-
ty of  single events as per Figure 2.5, 
an occurrence exceedance probability 
curve, but also annual aggregate loss 
from hazards of  that type, i.e. an an-
nual aggregate exceedance probabil-

ity curve. For a given return period 
the aggregate exceedance probability 
value will clearly be greater or at least 
equal to the occurrence exceedance 
probability — the 1 in 200 worst ag-
gregate exceedance probability could 
be a year of  one mega event or a year 
of  five smaller ones that are individ-
ually unexceptional but cumulatively 
significant.

The models can be used to compare 
the outcome of  different strategies 
to manage and mitigate risk. The cost 
and benefit of  different solutions 
can be compared, and so an optimal 

strategy rationalised. An anonymised 
insurance example is shown in Figure 
2.6.

Figure 2.6 compares  10 reinsurance 
hedging options to manage insurance 
risk against two measures, one of  risk 
and one of  return. On the horizon-
tal axis we have the risk measure: the 
worse result that we may expect every 
100 years, while on the vertical axis 
we have the return measure, or rath-
er its inverse here, the cost of  each 
hedging option.

Ideally we would be to the top left 

An anonymised example of a risk return analysis
Source: Willis Towers Watson

FIGURE 2.6
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of  the chart: low risk but low cost. 
The ‘do nothing’ option is the black 
triangle at the top right: high risk (a 
EUR 70 million 1-in-100 year loss) 
but zero additional cost. The nine re-
insurance hedging options  fall into 
two clusters on the chart.

The purple diamond option to the ex-
treme left has the least risk, reducing 
the 1-in-100 loss to EUR 30 million, 
but at an annual cost of  EUR 2.25 mil-
lion. The other two options in that 
cluster cost more and offer less ben-
efit so can be ignored. The best opin-
ion of  the middle group is the purple 
square, reducing the 1-in-100 loss to 
EUR 55 million but at an annual aver-
age cost of  EUR 1.75 million. Again, 
this option clearly offers the best risk 
return characteristics of  all  the others 
in the middle group, so the others in 
that group may be discounted.

Therefore, from 10 options including 
the ‘do nothing’, option we have a 
shortlist of  three: 
•	 black triangle: high risk 

(EUR 70 million 1-in-100 loss), 
zero cost;

•	 purple square: medium risk 
(EUR 55 million 1-in-100 loss), 
medium cost (EUR 1.75 million);

•	 purple diamond: lowest risk 
(EUR 30 million 1-in-100 loss), 
highest cost (EUR 2.25 million).

Which  to pick depends on the risk ap-
petite of  the firm. If  they are uncom-
fortable with the unhedged risk then 
the purple diamond seems to offer 
much better protection than the pur-
ple square option for comparatively 
little additional cost.

Similar methods can be used to com-
pare options for, say, managing flood 

risk in a particular location and/or 
process risk for a particular plant. 
The same metrics can be used to look 
at and compare different perils and 
combinations of  perils. The methods 
make no moral judgements but  allow-
ing the cost of  a particular strategy to 
be compared against the reduction is a 
risk as defined by a specific risk meas-
ure. It is at this point that more sub-
jective, political decisions can be made  
on an informed, objective basis.

An example of  a comparative peril 
analysis for a European city is out-
lined in a paper by Grünthal et al. 
(2006) on the city of  Cologne.

It must always be remembered that 
models advise, not decide. Such charts 
and analyses should not be considered 
definitive assessments; like any model 
they are based upon a set of  defined 
assumptions.

2.1.4
Conclusions and key 

messages

Partnership
The process of  risk assessment acts as 
a catalyst to improve risk understand-
ing and so to encourage a process of 
proactive risk management. An early 
adapter of  these methods, the glob-
al catastrophe insurance and reinsur-
ance industry has been transformed 
by the process and has become more 
technically adept, more engaged with 
science and more financially secure, 
providing more resilience for society. 
Similarly, the manufacturing and pro-
cess industries have embraced struc-
tured risk identification and assess-
ment techniques to improve the safety 

of  the manufacturing process and the 
safety of  the consumer.

Disaster risk assessment requires a 
combination of  skills, knowledge and 
data that will not be held within one 
firm, one industry, one institution, 
one discipline, one country, or neces-
sarily one region. Risk assessment re-
quires input from a variety of  experts 
in order to identify potential hazards, 
those that could occur as well as those 
in the historical record.  

Rigorous approaches to risk assess-
ment require scientific modelling and 
a precise understanding of  risk and 
probability. Scientific models can be 
compared in order to challenge the 
underlying assumptions of  each and 
lead to better, more transparent deci-
sions. 

As risk assessments get more quan-
titative, scientific, and technical, it is 
important that policymakers are able 
to interpret them. The assumptions 
within models must be transparent, 
and qualitative risk assessment (such 
as deterministic scenario impacts 
or risk matrixes) can be useful and 
complementary to stochastic model-
ling. It is important that policymak-
ers can demonstrate that appropriate 
expertise and rigor has been engaged 
to found risk management decisions 
firmly.

The practitioner lies in the centre of 
the many opportunities for partner-
ships in disaster risk assessment. In 
order to think beyond accepted ways 
of  working and challenge ingrained 
assumptions, links between other 
practitioners in familiar fields as well 
as other sectors and industries and ac-
ademia are extremely valuable.
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Knowledge
The risk assessment process is struc-
tured and covers risk identification, 
hazard assessment, determining expo-
sure and understanding vulnerability.
 
Depending on the objective of  risk 
assessment and data availability, risk 
assessment methods can range in for-
malization and rigor. There are more 
subjective scenario based determinis-
tic models, semi quantitative risk anal-
yses such as risk matrixes, and fully 
quantitative risk assessment; probabil-
istic or stochastic risk modelling. The 
more qualitative approaches to risk 
add value through the process of  de-
veloping a framework to capture sub-
jective risk perception and serve as a 
starting point for a discussion about 
assumptions and risk recognition en-
gaging a wide variety of  experts and 
stakeholders in the process. They also 
provide a means to reality check more 
theoretical models. Probabilistic and 
stochastic analyses provide the poten-
tial to perform cost/benefit or risk/
return analysis, creating an objective 
basis for decision making.

Rigorous quantitative approaches 
to risk assessment and probabilistic 
analysis raise awareness of  the need 
for further scientific input and the re-
quirement to transfer of  knowledge 
and engagement between science and 
practitioners.

Risk assessment and analysis provides 
a framework to weigh decisions, and 
risk models provide an objective ba-
sis against which policy decisions 
can be made and justified. However, 
it is important that the limitations of 
modelling are recognized and inher-
ent uncertainty is understood. Having 

the ability to compare and challenge 
assumptions, as well as requiring evi-
dence based analysis, is required.

Risk perception is subjective, but 
practitioners have valuable informa-
tion in the fields of  data, methodol-
ogies and models that further solidify 
frameworks through which hazards 
can be understood and compared in 
an objective fashion. 

Innovation
Innovation is required to meet the 
challenges of  lack of  data and partial 
information in risk identification and 
modelling. Creative approaches can 
be made to capture and challenges 
assumptions implicitly or explicitly 
made and so test them against availa-
ble data and defined stresses.

.

Risk analysis creates a 
framework; a starting 

point for debate about 
policy, risk and what we 
know and cannot know. 

This leads to greater 
understanding and 

better, more transparent 
decision-making.

No model is perfect. New scientif-
ic input can improve and challenge 
models – testing sensitivity to prior 
assumption, so leading to a great-
er understanding of  disaster events 
which in turn leads to safer compa-
nies, communities and countries A 
deeper understanding of  the quantita-
tive and qualitative approaches to risk 

management can help innovate ways 
of  thinking about subjective public 
risk perception, and risk assessment 
frameworks can develop a more ob-
jective understanding of  risk and 
risk-informed decision making.

Risk assessment and associated mod-
elling contain inherent uncertainty and 
are not fully complete. It is important 
to innovate in areas where hazards are 
less known and capable of  anticipa-
tion; truly “unknown unknowns” and 
“known unknowns” must be consid-
ered.  Similarly assumptions held for 
“known knowns” should be contin-
uously challenged and tested as new 
information arises.
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